IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023008232.html
   My bibliography  Save this article

A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction

Author

Listed:
  • He, Wanxin
  • Wang, Yiyuan
  • Li, Gang
  • Zhou, Jinhang

Abstract

The maximum entropy method (MEM) is a powerful tool for the recovery of unknown probability density functions (PDF) and has growing popularity in the reliability analysis community. However, MEM may be inaccurate for PDFs with a complex shape (e. g. multiple modals or a long tail), influencing the accuracy of the reliability analysis greatly. To overcome this deficiency, this study proposes a novel MEM paradigm based on the B-spline theory and the low-discrepancy sequence. Firstly, to enhance the performance of MEM for complex PDFs, the B-spline functions are used to construct the MEM PDF. Correspondingly, the iteration formulation is derived for the undetermined parameter estimation of the B-spline-based MEM PDF based on the closed solution for minimizing the Kullback-Leibler divergence. Then, we adopt the low-discrepancy sequence to calculate the objective function of minimizing the Kullback-Leibler divergence efficiently. Compared with MEM and other moment-based reliability analysis methods, the proposed method does not require the statistical moments, and integrates the advantages of the B-spline theory and MEM. To illustrate the benefits of our method, five examples are analyzed and compared with some classical reliability analysis methods.

Suggested Citation

  • He, Wanxin & Wang, Yiyuan & Li, Gang & Zhou, Jinhang, 2024. "A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008232
    DOI: 10.1016/j.ress.2023.109909
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023008232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yuhao & Gao, Yi & Liu, Yongming & Ghosh, Sayan & Subber, Waad & Pandita, Piyush & Wang, Liping, 2021. "Bayesian-entropy gaussian process for constrained metamodeling," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Zhang, Dequan & Shen, Shuoshuo & Wu, Jinhui & Wang, Fang & Han, Xu, 2023. "Kinematic trajectory accuracy reliability analysis for industrial robots considering intercorrelations among multi-point positioning errors," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Mehni, Moien Barkhori & Mehni, Mohammad Barkhori, 2023. "Reliability analysis with cross-entropy based adaptive Markov chain importance sampling and control variates," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Xu, Jun & Kong, Fan, 2018. "A new unequal-weighted sampling method for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 94-102.
    5. Francesco Di Maio & Chiara Pettorossi & Enrico Zio, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Post-Print hal-04103855, HAL.
    6. Erdem Acar & Masoud Rais-Rohani & Christopher D. Eamon, 2010. "Reliability estimation using univariate dimension reduction and extended generalised lambda distribution," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 4(2/3), pages 166-187.
    7. Echard, B. & Gayton, N. & Lemaire, M. & Relun, N., 2013. "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 232-240.
    8. Zhang, Xiaobo & Lu, Zhenzhou & Cheng, Kai, 2022. "Cross-entropy-based directional importance sampling with von Mises-Fisher mixture model for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Xu, Jun & Song, Jinheng & Yu, Quanfu & Kong, Fan, 2023. "Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Rusnak, Patrik & Zaitseva, Elena & Levashenko, Vitaly & Bolvashenkov, Igor & Kammermann, Jörg, 2024. "Importance analysis of a system based on survival signature by structural importance measures," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Zhang, Long-Wen & Dang, Chao & Zhao, Yan-Gang, 2023. "An efficient method for accessing structural reliability indexes via power transformation family," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Wu, Jinhui & Tao, Yourui & Han, Xu, 2023. "Polynomial chaos expansion approximation for dimension-reduction model-based reliability analysis method and application to industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Zhan, Hongyou & Xiao, Ning-Cong & Ji, Yuxiang, 2022. "An adaptive parallel learning dependent Kriging model for small failure probability problems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Menz, Morgane & Gogu, Christian & Dubreuil, Sylvain & Bartoli, Nathalie & Morio, Jérôme, 2020. "Adaptive coupling of reduced basis modeling and Kriging based active learning methods for reliability analyses," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    10. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    13. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    14. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    15. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Chengning Zhou & Ning-Cong Xiao & Ming J Zuo & Xiaoxu Huang, 2020. "AK-PDF: An active learning method combining kriging and probability density function for efficient reliability analysis," Journal of Risk and Reliability, , vol. 234(3), pages 536-549, June.
    17. Bolin Liu & Liyang Xie, 2020. "An Improved Structural Reliability Analysis Method Based on Local Approximation and Parallelization," Mathematics, MDPI, vol. 8(2), pages 1-13, February.
    18. Wang, Jiaqi & Zhang, Limao & Yang, Hui & Liu, Huabei & Skibniewski, Mirosław J., 2024. "Dynamic reliability analysis of Aerial Building Machine under extreme wind loads using improved QBDC-based active learning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    19. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    20. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.