IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v234y2023ics0951832023001187.html
   My bibliography  Save this article

A new generalized δ-shock model and its application to 1-out-of-(m+1):G cold standby system

Author

Listed:
  • Eryilmaz, Serkan
  • Unlu, Kamil Demirberk

Abstract

According to the classical δ-shock model, the system failure occurs upon the occurrence of a new shock that arrives in a time length less than δ, a given positive value. In this paper, a new generalized version of the δ-shock model is introduced. Under the proposed model, the system fails if there are m shocks that arrive in a time length less than δ after a previous shock, m≥1. The mean time to failure of the system is approximated for both discretely and continuously distributed intershock time distributions. The usefulness of the model is also shown to study 1-out-of-(m+1):G cold standby system. Illustrative numerical results are presented for geometric, exponential, discrete and continuous phase-type intershock time distributions.

Suggested Citation

  • Eryilmaz, Serkan & Unlu, Kamil Demirberk, 2023. "A new generalized δ-shock model and its application to 1-out-of-(m+1):G cold standby system," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023001187
    DOI: 10.1016/j.ress.2023.109203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023001187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy M. Costigan, 1996. "Combination setwise‐Bonferroni‐type bounds," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(1), pages 59-77, February.
    2. Parvardeh, A. & Balakrishnan, N., 2015. "On mixed δ-shock models," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 51-60.
    3. Ye, Kewei & Wang, Han & Ma, Xiaobing, 2023. "A generalized dynamic stress-strength interference model under δ-failure criterion for self-healing protective structure," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Lina Bian & Ming Ma & Hua Liu & Jian Hua Ye, 2019. "Lifetime distribution of two discrete censored δ shock models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(14), pages 3451-3463, July.
    5. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Optimal component loading in 1-out-of-N cold standby systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 58-64.
    6. Chadjiconstantinidis, Stathis & Eryilmaz, Serkan, 2023. "Reliability of a mixed δ-shock model with a random change point in shock magnitude distribution and an optimal replacement policy," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On the Time-Dependent Delta-Shock Model Governed by the Generalized PóLya Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1627-1650, September.
    8. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Mohsen Bohlooli-Zefreh & Majid Asadi & Afshin Parvardeh, 2021. "On the reliability and optimal maintenance of systems under a generalized mixed δ -shock model," Journal of Risk and Reliability, , vol. 235(5), pages 909-922, October.
    10. S. Sadooghi-Alvandi & A. Nematollahi & R. Habibi, 2009. "On the distribution of the sum of independent uniform random variables," Statistical Papers, Springer, vol. 50(1), pages 171-175, January.
    11. Ming Ma & Li Na Bian & Hua Liu & Jian Hua Ye, 2021. "Lifetime behavior of discrete Markov chain censored δ shock model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(5), pages 1019-1035, March.
    12. Zhao, Xian & Dong, Bingbing & Wang, Xiaoyue, 2023. "Reliability analysis of a two-dimensional voting system equipped with protective devices considering triggering failures," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Zhao, Bing & Yue, Dequan & Liao, Haitao & Liu, Yuanhui & Zhang, Xiaohong, 2021. "Performance analysis and optimization of a cold standby system subject to δ-shocks and imperfect repairs," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    14. Mohammad Hossein Poursaeed, 2020. "On δ-shock model in a multi-state system," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(7), pages 1761-1767, April.
    15. Ali Doostmoradi & Mohammad Reza Akhoond & Mohammad Reza Zadkarami, 2023. "Reliability of a system under a new mixed shock model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(1), pages 156-169, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis S. Triantafyllou, 2023. "An Archimedean Copulas-Based Approach for m -Consecutive- k -Out-of- n : F Systems with Exchangeable Components," Stats, MDPI, vol. 6(4), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Fengming & Cui, Lirong & Ye, Zhisheng & Zhou, Yu, 2024. "Reliability analysis for systems with self-healing mechanism in degradation-shock dependence processes with changing degradation rate," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Chadjiconstantinidis, Stathis & Eryilmaz, Serkan, 2023. "Reliability of a mixed δ-shock model with a random change point in shock magnitude distribution and an optimal replacement policy," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Mansour Shrahili & Mohamed Kayid, 2023. "Stochastic Orderings of the Idle Time of Inactive Standby Systems," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    4. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Heterogeneous 1-out-of-N warm standby systems with online checkpointing," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 127-136.
    5. Serkan Eryilmaz & Konul Bayramoglu, 2014. "Life behavior of $$\delta $$ δ -shock models for uniformly distributed interarrival times," Statistical Papers, Springer, vol. 55(3), pages 841-852, August.
    6. Amirhossain Chambari & Javad Sadeghi & Fakhri Bakhtiari & Reza Jahangard, 2016. "A note on a reliability redundancy allocation problem using a tuned parameter genetic algorithm," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 426-442, June.
    7. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    8. Lina Bian & Bo Peng & Yong Ye, 2023. "Reliability Analysis and Optimal Replacement Policy for Systems with Generalized Pólya Censored δ Shock Model," Mathematics, MDPI, vol. 11(21), pages 1-19, November.
    9. Hidetoshi Murakami, 2014. "A saddlepoint approximation to the distribution of the sum of independent non-identically uniform random variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(4), pages 267-275, November.
    10. Buonocore, Aniello & Pirozzi, Enrica & Caputo, Luigia, 2009. "A note on the sum of uniform random variables," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2092-2097, October.
    11. Chunming Zhang, 2014. "Assessing mean and median filters in multiple testing for large-scale imaging data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 51-71, March.
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing uploading and downloading pace distribution in system with two non-identical storage units," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Chen, Wu-Lin & Wang, Kuo-Hsiung, 2018. "Reliability analysis of a retrial machine repair problem with warm standbys and a single server with N-policy," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 476-486.
    15. Kim, Heungseob, 2018. "Maximization of system reliability with the consideration of component sequencing," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 64-72.
    16. Jewgeni H. Dshalalow & Hend Aljahani, 2023. "Discrete and Continuous Operational Calculus in N-Critical Shocks Reliability Systems with Aging under Delayed Information," Mathematics, MDPI, vol. 11(16), pages 1-27, August.
    17. Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    19. Wei, Xiaohua & Bai, Sijun & Wu, Bei, 2023. "A novel shock-dependent preventive maintenance policy for degraded systems subject to dynamic environments and N-critical shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Stathis Chadjiconstantinidis & Altan Tuncel & Serkan Eryilmaz, 2023. "Α new mixed δ-shock model with a change in shock distribution," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 491-509, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023001187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.