IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v219y2022ics0951832021007328.html
   My bibliography  Save this article

Analysis of epidemic vaccination strategies by node importance and evolutionary game on complex networks

Author

Listed:
  • Meng, Xueyu
  • Han, Sijie
  • Wu, Leilei
  • Si, Shubin
  • Cai, Zhiqiang

Abstract

Currently, vaccination is the most effective means to prevent the spread of infectious diseases. In this paper, a novel SIRV-NI-EG (susceptible, infected, recovered, vaccinated - node importance - evolutionary game) model is established to analyze the evolution of vaccination strategy under the combination of mandatory vaccination and voluntary vaccination. For the mandatory vaccination, some nodes with high node importance are firstly vaccinated in a certain proportion according to the node importance ranking. The remaining nodes in the network voluntarily decide whether to vaccinate according to the surrounding situation based on the evolutionary game theory. And degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, PageRank, k-core, structural holes and WTOPSIS are used to evaluate the node importance in the network. In addition, the methods based on node deletion are used to further evaluate the importance of the initial vaccination nodes. Finally, vaccination evolutionary game analysis based on the SIRV-NI-EG model is performed on three complex networks, including USAir network, Facebook network and BA scale-free network. The results show that the performances of all evaluation indicators are better than random vaccination. Our conclusions can provide better vaccination strategies for government decision-making to control the spread of infectious diseases.

Suggested Citation

  • Meng, Xueyu & Han, Sijie & Wu, Leilei & Si, Shubin & Cai, Zhiqiang, 2022. "Analysis of epidemic vaccination strategies by node importance and evolutionary game on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007328
    DOI: 10.1016/j.ress.2021.108256
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021007328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qingchu & Fu, Xinchu, 2016. "Immunization and epidemic threshold of an SIS model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 576-581.
    2. Aven, Terje & Zio, Enrico, 2021. "Globalization and global risk: How risk analysis needs to be enhanced to be effective in confronting current threats," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    3. Dui, Hongyan & Meng, Xueyu & Xiao, Hui & Guo, Jianjun, 2020. "Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Lin, Yuguo & Jiang, Daqing & Wang, Shuai, 2014. "Stationary distribution of a stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 187-197.
    5. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Effect of information spreading to suppress the disease contagion on the epidemic vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 180-187.
    6. Wang, Xinyu & Jia, Danyang & Gao, Shupeng & Xia, Chengyi & Li, Xuelong & Wang, Zhen, 2020. "Vaccination behavior by coupling the epidemic spreading with the human decision under the game theory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    7. Abrahamsen, Eirik Bjorheim & Milazzo, Maria Francesca & Selvik, Jon T. & Asche, Frank & Abrahamsen, HÃ¥kon Bjorheim, 2020. "Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    8. Fukuda, Eriko & Kokubo, Satoshi & Tanimoto, Jun & Wang, Zhen & Hagishima, Aya & Ikegaya, Naoki, 2014. "Risk assessment for infectious disease and its impact on voluntary vaccination behavior in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 1-9.
    9. Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Zhu, Peican & Wang, Xinyu & Li, Shudong & Guo, Yangming & Wang, Zhen, 2019. "Investigation of epidemic spreading process on multiplex networks by incorporating fatal properties," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 512-524.
    11. Guo, Kai & Ye, Zhisheng & Liu, Datong & Peng, Xiyuan, 2021. "UAV flight control sensing enhancement with a data-driven adaptive fusion model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Yu, Hui & Cao, Xi & Liu, Zun & Li, Yongjun, 2017. "Identifying key nodes based on improved structural holes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 318-327.
    13. Sheryl L. Chang & Nathan Harding & Cameron Zachreson & Oliver M. Cliff & Mikhail Prokopenko, 2020. "Modelling transmission and control of the COVID-19 pandemic in Australia," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    14. Ding, Hong & Xu, Jia-Hao & Wang, Zhen & Ren, Yi-Zhi & Cui, Guang-Hai, 2018. "Subsidy strategy based on history information can stimulate voluntary vaccination behaviors on seasonal diseases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 390-399.
    15. Nadim, Sk Shahid & Ghosh, Indrajit & Chattopadhyay, Joydev, 2021. "Short-term predictions and prevention strategies for COVID-19: A model-based study," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    16. Aven, Terje, 2015. "Implications of black swans to the foundations and practice of risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 83-91.
    17. Shi, Benyun & Liu, Guangliang & Qiu, Hongjun & Wang, Zhen & Ren, Yizhi & Chen, Dan, 2019. "Exploring voluntary vaccination with bounded rationality through reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 171-182.
    18. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    19. Han, Dun & Shao, Qi & Li, Dandan & Sun, Mei, 2020. "How the individuals’ risk aversion affect the epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    20. Zhang, Hai-Feng & Shu, Pan-Pan & Wang, Zhen & Tang, Ming & Small, Michael, 2017. "Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 332-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianru Chen & Hualin Xie & Qunli Zhai, 2022. "Management Policy of Farmers’ Cultivated Land Abandonment Behavior Based on Evolutionary Game and Simulation Analysis," Land, MDPI, vol. 11(3), pages 1-23, February.
    2. Dui, Hongyan & Wei, Xuan & Xing, Liudong, 2023. "A new multi-criteria importance measure and its applications to risk reduction and safety enhancement," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Liang, Zhenglin & Jiang, Chen & Sun, Muxia & Xue, Zongqi & Li, Yan-Fu, 2023. "Resilience analysis for confronting the spreading risk of contagious diseases," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Wang, Shuliang & Sun, Jingya & Zhang, Jianhua & Dong, Qiqi & Gu, Xifeng & Chen, Chen, 2023. "Attack-Defense game analysis of critical infrastructure network based on Cournot model with fixed operating nodes," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    5. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Jun Qian & Tongda Zhang & Xiao Sun & Yueting Chai, 2023. "The coordination of collective and individual solutions in risk-resistant scenarios," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-15, February.
    8. Kumar, Viney & Bhattacharyya, Samit, 2023. "Nonlinear effect of sentiments and opinion sharing on vaccination decision in face of an outbreak: A multiplex network approach," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    3. Huang, Jiechen & Wang, Juan & Xia, Chengyi, 2020. "Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Meng, Xueyu & Cai, Zhiqiang & Si, Shubin & Duan, Dongli, 2021. "Analysis of epidemic vaccination strategies on heterogeneous networks: Based on SEIRV model and evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    6. Wang, Jingrui & Zhang, Huizhen & Jin, Xing & Ma, Leyu & Chen, Yueren & Wang, Chao & Zhao, Jian & An, Tianbo, 2023. "Subsidy policy with punishment mechanism can promote voluntary vaccination behaviors in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Benyun Shi & Guangliang Liu & Hongjun Qiu & Yu-Wang Chen & Shaoliang Peng, 2019. "Voluntary Vaccination through Perceiving Epidemic Severity in Social Networks," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    8. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    9. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    10. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    11. Vivekanandhan, Gayathri & Nourian Zavareh, Mahdi & Natiq, Hayder & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Svetec, Milan, 2022. "Investigation of vaccination game approach in spreading covid-19 epidemic model with considering the birth and death rates," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    12. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Jiang, Bei & Yuan, Lin & Zou, Rongcheng & Su, Rui & Mi, Yuqiang, 2023. "The effect of migration on vaccination dilemma in networked populations," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    14. Wang, Jianwei & He, Jialu & Yu, Fengyuan & Guo, Yuxin & Li, Meiyu & Chen, Wei, 2020. "Realistic decision-making process with memory and adaptability in evolutionary vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    15. Wang, Huan & Ma, Chuang & Chen, Han-Shuang & Zhang, Hai-Feng, 2021. "Effects of asymptomatic infection and self-initiated awareness on the coupled disease-awareness dynamics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    16. Alam, Muntasir & Tanaka, Masaki & Tanimoto, Jun, 2019. "A game theoretic approach to discuss the positive secondary effect of vaccination scheme in an infinite and well-mixed population," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 201-213.
    17. Shao, Qi & Han, Dun, 2022. "Epidemic spreading in metapopulation networks with heterogeneous mobility rates," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    18. Zuo, Chao & Ling, Yuting & Zhu, Fenping & Ma, Xinyu & Xiang, Guochun, 2023. "Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis," Applied Mathematics and Computation, Elsevier, vol. 447(C).
    19. Wang, Qingqing & Du, Chunpeng & Geng, Yini & Shi, Lei, 2020. "Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    20. Han, Dun & Wang, Xiao, 2023. "Vaccination strategies and virulent mutation spread: A game theory study," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.