IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v217y2022ics0951832021005779.html
   My bibliography  Save this article

Reliability evaluation of weighted voting system based on D–S evidence theory

Author

Listed:
  • Liu, Qiang
  • Zhang, Hailin

Abstract

In classic weighted voting systems (WVSs), a voting unit (VU) is subjected to a three-failure mode, and the VU's decision result is represented as a definite one-dimensional variable, which causes the loss of the decision information of the VU. The VU's decision result is not fully utilized because of the use of the majority rule. In this study, we improve the WVS model and propose two new models. We analyze the failure mode of the VU in the new model and provide a method for calculating the probability of the occurrence of a VU failure. To avoid the loss of the VUs’ decision information, we use the basic probability assignment (BPA) function to characterize the decision results in the new models and propose four rules for generating the BPA. Three theorems are proved for combining different types of decision results of the VUs. We also replace the majority rule in the WVS with the Dempster combination rule to fully utilize the decision results of the VUs. We devise two algorithms to evaluate the reliability of the two new WVS models and conduct two experiments to test the utility of the proposed algorithms and analyze the effects of system parameters on the system reliability.

Suggested Citation

  • Liu, Qiang & Zhang, Hailin, 2022. "Reliability evaluation of weighted voting system based on D–S evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005779
    DOI: 10.1016/j.ress.2021.108079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021005779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saba Bashir & Usman Qamar & Farhan Khan, 2015. "Heterogeneous classifiers fusion for dynamic breast cancer diagnosis using weighted vote based ensemble," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(5), pages 2061-2076, September.
    2. Zhang, Yiying, 2021. "Reliability Analysis of Randomly Weighted k-out-of-n Systems with Heterogeneous Components," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    3. Xiaoyan Zhu & Mahmoud Boushaba & Abdelmoumene Boulahia & Xian Zhao, 2019. "A linear m-consecutive-k-out-of-n system with sparse d of non-homogeneous Markov-dependent components," Journal of Risk and Reliability, , vol. 233(3), pages 328-337, June.
    4. Yu-ke Chen & Yan Zou & Zhe Chen, 2014. "Preference Integration and Optimization of Multistage Weighted Voting System Based on Ordinal Preference," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, May.
    5. Lei Zhou & Hisashi Yamamoto & Taishin Nakamura & Xiao Xiao, 2020. "Optimization problems for consecutive-2-out-of-n:G system," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(15), pages 3792-3807, August.
    6. M. Salehi & Z. Shishebor & M. Asadi, 2019. "On the reliability modeling of weighted k-out-of-n systems with randomly chosen components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(5), pages 589-605, July.
    7. Liu, Qiang, 2021. "Reliability evaluation of two-stage evidence classification system considering preference and error," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Levitin, Gregory, 2002. "Evaluating correct classification probability for weighted voting classifiers with plurality voting," European Journal of Operational Research, Elsevier, vol. 141(3), pages 596-607, September.
    10. Yong Zhang & Hongrui Zhang & Jing Cai & Binbin Yang, 2014. "A Weighted Voting Classifier Based on Differential Evolution," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, May.
    11. Hadi Akbarzade Khorshidi & Indra Gunawan & M. Yousef Ibrahim, 2015. "On Reliability Evaluation of Multistate Weighted -out-of- System Using Present Value," The Engineering Economist, Taylor & Francis Journals, vol. 60(1), pages 22-39, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qiang, 2021. "Reliability evaluation of two-stage evidence classification system considering preference and error," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Eryilmaz, Serkan & Ucum, Kaan Ayberk, 2021. "The lost capacity by the weighted k-out-of-n system upon system failure," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal aborting policy for shock exposed missions with random rescue time," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Zhang, Yiying, 2021. "Reliability Analysis of Randomly Weighted k-out-of-n Systems with Heterogeneous Components," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Sultan Almotairi & Elsayed Badr & Mustafa Abdul Salam & Hagar Ahmed, 2023. "Breast Cancer Diagnosis Using a Novel Parallel Support Vector Machine with Harris Hawks Optimization," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
    8. Meshwa Rameshbhai Savalia & Jaiprakash Vinodkumar Verma, 2023. "Classifying Malignant and Benign Tumors of Breast Cancer: A Comparative Investigation Using Machine Learning Techniques," International Journal of Reliable and Quality E-Healthcare (IJRQEH), IGI Global, vol. 12(1), pages 1-19, January.
    9. Xiahou, Tangfan & Zheng, Yi-Xuan & Liu, Yu & Chen, Hong, 2023. "Reliability modeling of modular k-out-of-n systems with functional dependency: A case study of radar transmitter systems," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    10. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Xiaogang Song & Zhengjun Zhai & Yangming Guo & Peican Zhu & Jie Han, 2017. "Approximate Analysis of Multi-State Weighted k -Out-of- n Systems Applied to Transmission Lines," Energies, MDPI, vol. 10(11), pages 1-16, October.
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Using kamikaze components in multi-attempt missions with abort option," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    13. Ioannis S. Triantafyllou, 2022. "Signature-Based Analysis of the Weighted- r -within-Consecutive- k -out-of- n : F Systems," Mathematics, MDPI, vol. 10(15), pages 1-13, July.
    14. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    16. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    17. Wang, Xiaoyue & Zhao, Xian & Wu, Congshan & Wang, Siqi, 2022. "Mixed shock model for multi-state weighted k-out-of-n: F systems with degraded resistance against shocks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Wang, Jingjing & Zheng, Rui & Lin, Tianran, 2022. "Maintenance modeling for balanced systems subject to two competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Alonso-Meijide, J.M. & Casas-Méndez, B. & Fiestras-Janeiro, M.G., 2015. "Computing Banzhaf–Coleman and Shapley–Shubik power indices with incompatible players," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 377-387.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.