IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v150y2016icp65-77.html
   My bibliography  Save this article

Reliability of mechanisms with periodic random modal frequencies using an extreme value-based approach

Author

Listed:
  • Savage, Gordon J.
  • Zhang, Xufang
  • Son, Young Kap
  • Pandey, Mahesh D.

Abstract

Resonance in a dynamic system is to be avoided since it often leads to impaired performance, overstressing, fatigue fracture and adverse human reactions. Thus, it is necessary to know the modal frequencies and ensure they do not coincide with any applied periodic loadings. For a rotating planar mechanism, the coefficients in the mass and stiffness matrices are periodically varying, and if the underlying geometry and material properties are treated as random variables then the modal frequencies are both position-dependent and probabilistic. The avoidance of resonance is now a complex problem. Herein, free vibration analysis helps determine ranges of modal frequencies that in turn, identify the running speeds of the mechanism to be avoided. This paper presents an efficient and accurate sample-based approach to determine probabilistic minimum and maximum extremes of the fundamental frequencies and the angular positions of their occurrence. Then, given critical lower and upper frequency constraints it is straightforward to determine reliability in terms of probability of exceedance. The novelty of the proposed approach is that the original expensive and implicit mechanistic model is replaced by an explicit meta-model that captures the tolerances of the design variables over the entire range of angular positions: position-dependent eigenvalues can be found easily and quickly. Extreme-value statistics of the modal frequencies and extreme-value statistics of the angular positions are readily computed through MCS. Limit-state surfaces that connect the frequencies to the design variables may be easily constructed. Error analysis identifies three errors and the paper presents ways to control them so the methodology can be sufficiently accurate. A numerical example of a flexible four-bar linkage shows the proposed methodology has engineering applications. The impact of the proposed methodology is two-fold: it presents a safe-side analysis based on free vibration methods to assess and manage the uncertainty in the range of modal frequencies, and, it provides a launching platform for timely design optimization.

Suggested Citation

  • Savage, Gordon J. & Zhang, Xufang & Son, Young Kap & Pandey, Mahesh D., 2016. "Reliability of mechanisms with periodic random modal frequencies using an extreme value-based approach," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 65-77.
  • Handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:65-77
    DOI: 10.1016/j.ress.2016.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016000181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Weidong & Rao, S.S., 2007. "Uncertainty analysis and allocation of joint tolerances in robot manipulators based on interval analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 54-64.
    2. Savage, Gordon J. & Kap Son, Young, 2011. "The set-theory method for systems reliability of structures with degrading components," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 108-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Baorui & Xia, Ye & Li, Qi, 2022. "An extreme value prediction method based on clustering algorithm," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Zhou, Di & Pan, Ershun & Zhang, Xufang & Zhang, Yimin, 2020. "Dynamic Model-based Saddle-point Approximation for Reliability and Reliability-based Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    2. Jayaraman, Deepan & Ramu, Palaniappan, 2023. "L-moments and Bayesian inference for probabilistic risk assessment with scarce samples that include extremes," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Zeng, Chen-dong & Qiu, Zhi-cheng & Zhang, Fen-hua & Zhang, Xian-min, 2023. "Error modelling and motion reliability analysis of a multi-DOF redundant parallel mechanism with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Nawfal BAHHA & Imane El KARTIT, 2021. "How to Reduce Uncertainty in Supply Chains? The Role of the Interactive Control Lever," International Business Research, Canadian Center of Science and Education, vol. 14(6), pages 1-68, June.
    5. Huang, Peng & Gu, Yingkui & Li, He & Yazdi, Mohammad & Qiu, Guangqi, 2023. "An Optimal Tolerance Design Approach of Robot Manipulators for Positioning Accuracy Reliability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Zhang, Dequan & Shen, Shuoshuo & Wu, Jinhui & Wang, Fang & Han, Xu, 2023. "Kinematic trajectory accuracy reliability analysis for industrial robots considering intercorrelations among multi-point positioning errors," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
    8. Bichon, Barron J. & McFarland, John M. & Mahadevan, Sankaran, 2011. "Efficient surrogate models for reliability analysis of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1386-1395.
    9. Rougé, Charles & Mathias, Jean-Denis & Deffuant, Guillaume, 2014. "Relevance of control theory to design and maintenance problems in time-variant reliability: The case of stochastic viability," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 250-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:65-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.