IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v637y2024ics0378437124000852.html
   My bibliography  Save this article

A Multifractal Detrended Fluctuation Analysis approach using generalized functions

Author

Listed:
  • Mendonça, Suzielli M.
  • Cabella, Brenno C.T.
  • Martinez, Alexandre S.

Abstract

Detrended Fluctuation Analysis (DFA) and its generalization for multifractal signals, Multifractal Detrend Fluctuation Analysis (MFDFA), are widely used techniques to investigate the fractal properties of time series by estimating their Hurst exponent (H). These methods involve calculating the fluctuation functions, which represent the square root of the mean square deviation from the detrended cumulative curve of a given time series. However, in the multifractal variant of the method, a particular case arises when the multifractal index vanishes. Consequently, it becomes necessary to define the fluctuation function differently for this specific case. In this paper, we propose an approach that eliminates the need for a piecewise definition of the fluctuation function, thereby enabling a unified formulation and interpretation in both DFA and MFDFA methodologies. Our formulation provides a more compact algorithm applicable to mono and multifractal time series. To achieve this, we express the fluctuation functions as generalized means, using the generalized logarithm and exponential functions from the context of the non-extensive statistical mechanics. We identified that the generalized formulation is the Box–Cox transformation of the dataset; hence we established a relationship between statistics parametrization and multifractality. Furthermore, this equivalence is related to the entropic index of the generalized functions and the multifractal index of the MFDFA method. To validate our formulation, we assess the efficacy of our method in estimating the (generalized) Hurst exponents H using commonly used signals such as the fractional Ornstein–Uhlenbeck (fOU) process, the symmetric Lévy distribution, pink, white, and Brownian noises. In addition, we apply our proposed method to a real-world dataset, further demonstrating its effectiveness in estimating the exponents H and uncovering the fractal nature of the data.

Suggested Citation

  • Mendonça, Suzielli M. & Cabella, Brenno C.T. & Martinez, Alexandre S., 2024. "A Multifractal Detrended Fluctuation Analysis approach using generalized functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
  • Handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000852
    DOI: 10.1016/j.physa.2024.129577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000852
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.