IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v636y2024ics0378437124000591.html
   My bibliography  Save this article

Flocking for leader ability effect and formation obstacle avoidance of multi-agents based on different potential functions

Author

Listed:
  • Li, Chenyang
  • Yang, Yonghui
  • Jiang, Guanjie
  • Chen, Xue-Bo

Abstract

The potential function plays a significant role in influencing interactions among multi-agents during flocking. Most studies that adopt the potential function have primarily focused on attraction and repulsion, neglecting other critical properties, such as well depth. This paper investigates the flocking phenomenon effect when individuals have different social distances and different potential functions with different well depths. Then, two key conclusions are derived. Firstly, a positive correlation between the well depth of the potential function and the attraction observed among intra-group agents. Secondly, agents with smaller social distances will repel agents with larger social distances under the same potential function. Based on this analysis, we propose an integrated flocking algorithm in this paper, which combines different potential functions with flocking and anti-flocking algorithms. Sub-algorithm 1 is the leader ability algorithm. It enables agents to act as actual leader agents that affect other agents, with the ability of their affecting depending on the well depth and social distance. Sub-algorithm 2 is the self-organized formation of multi-level leader agents and obstacle avoidance algorithms. It enables multi-agents to form the desired formation shape through self-organization and maintain the formation's integrity while avoiding obstacles under the effect of the potential function well depth. Furthermore, the potential function model designed in this paper enhances the formation cohesion and reduces the time required to establish formation. Finally, we demonstrate the proposed algorithm's stability and convergence by applying the Lyapunov stability theorem. The corresponding simulation results are presented and effectively verify the effectiveness of the integrated flocking algorithm.

Suggested Citation

  • Li, Chenyang & Yang, Yonghui & Jiang, Guanjie & Chen, Xue-Bo, 2024. "Flocking for leader ability effect and formation obstacle avoidance of multi-agents based on different potential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
  • Handle: RePEc:eee:phsmap:v:636:y:2024:i:c:s0378437124000591
    DOI: 10.1016/j.physa.2024.129551
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000591
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:636:y:2024:i:c:s0378437124000591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.