IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v634y2024ics0378437123010087.html
   My bibliography  Save this article

Delay-induced phase transitions in active matter

Author

Listed:
  • Pakpour, Fatemeh
  • Vicsek, Tamás

Abstract

We consider the patterns of collective motion emerging when many aligning, self-propelling units move in two dimensions while interacting through a repulsive potential and are also subject to delays and random perturbations. In this approach, delay plays the role analogous to reaction time so that a given particle is influenced by the information about the velocity and the position of the other particles in its vicinity with some time delay. To get insight into the involved complex flows and the transitions between them we use a simple model allowing – by fine-tuning of its few parameters – the observation and analysis of behaviours that are less accessible by experiments or analytic calculations and at the same time make the reproduction of experimental results possible. We report for the first time about a transition from fully ordered, polarized collective motion to disorder as a function of the increasing time delay. For a fixed intermediate value of the delay, a similar transition (from order to disorder) is obtained as the repulsion radius is increased. Our simulations show a transition from total polarization to two kinds of states: fully disordered and a kind of state which is a mixture of patches of fully disordered motion in the background of orderly moving other particles. The transition occurs as the delay time is increased and is sharp, indicating that the nature of this order–disorder transition is either of first-order or is described by a sharply decreasing linear function. Our model is a simplified version of a practical situation of quickly growing interest because time delays are expected to play an increasingly important role when the traffic of many, densely distributed autonomous drones will move around in a quasi-two-dimensional air space.

Suggested Citation

  • Pakpour, Fatemeh & Vicsek, Tamás, 2024. "Delay-induced phase transitions in active matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
  • Handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010087
    DOI: 10.1016/j.physa.2023.129453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123010087
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.