IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v634y2024ics0378437123010014.html
   My bibliography  Save this article

Message-passing approach to higher-order percolation

Author

Listed:
  • Peng, Hao
  • Qian, Cheng
  • Zhao, Dandan
  • Zhong, Ming
  • Han, Jianmin
  • Zhou, Tao
  • Wang, Wei

Abstract

Hypergraph describes real-world networks widely because it captures pairwise and multiple nodes’ interactions. Various kinds of damages, such as network attacks, hardware malfunctions, and communication disruptions, may impair the function of those real-world systems. We propose a generalized higher-order percolation model to investigate the robustness of the hypergraph, in which the nodes and hyperedges were randomly removed with probabilities. An accurate approach to studying the higher-order percolation model should overcome non-local tree-like structures and higher-order interactions, which makes the classical mean-field approach invalid. To this end, we develop a message-passing approach in which we first transform the hypergraph into a factor graph then develop a message-passing approach on the factor graph. Through extensive experimental studies on both artificial and real-world hypergraphs, our theory can accurately predict numerical results. The experimental data demonstrate that our theory achieves average accuracy rates in calculating giant connected component (GCC) size of 99.87% for artificial loopless hypergraphs, 99.24% for artificial hypergraphs with loops, and 99.65% for real-world hypergraphs. Our findings provide another way to understand the robustness of hypergraphs, and also provide certain ideas for studying complex systems in various fields.

Suggested Citation

  • Peng, Hao & Qian, Cheng & Zhao, Dandan & Zhong, Ming & Han, Jianmin & Zhou, Tao & Wang, Wei, 2024. "Message-passing approach to higher-order percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
  • Handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010014
    DOI: 10.1016/j.physa.2023.129446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123010014
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.