IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v633y2024ics037843712300924x.html
   My bibliography  Save this article

Dynamic coupling model of FDS and cellular automata considering trampling behavior

Author

Listed:
  • Li, Yufei
  • Li, Chao
  • Guo, Chenglin
  • Huo, Feizhou

Abstract

Fire accidents usually cause large casualties. In this paper, a fire evacuation model based on the dynamic coupling of FDS and CA, which dynamically couples disaster data and evacuation behavior, is designed to reflect the impact of disaster factors on the pedestrian evacuation process in real-time. Furthermore, pedestrians are divided into two categories, one type of pedestrians will choose to move against the wall to reduce the risk of stampede accidents, and the other type of pedestrian will evacuate to the exit according to the normal movement method. And considering the role of information transmission between pedestrians, the two types of pedestrians will transform into each other. In addition, the concept of pedestrian crowding, support, and friction is introduced and viewed as an influencing factor of normal pedestrian falls. Set the panic value as the influencing factor of the efficiency of pedestrian information transmission and the death probability of downed pedestrians. The impact of pedestrian density, pedestrian walking behavior towards walls, evacuation response time, information propagation radius, heat release rate of the fire source, and the interference of smoke on the pedestrians' visibility range on evacuation outcomes has been discussed through numerical simulations. The analysis shows that although the presence of pedestrians walking against the wall will slightly increase the evacuation time, when the available evacuation time allows, the risk of a stampede will be greatly reduced; The increase in evacuation response time will aggravate the panic psychology of pedestrians and increase the risk of stampede accidents; The increase of the pedestrian information transmission radius will reduce the risk of a stampede, and the effect is more obvious when the pedestrian density is smaller; Selecting building materials with lower heat release rates can effectively reduce the risk of fire incidents; The restriction of visibility range by smoke seriously endangers pedestrian safety and reduces the efficiency of evacuation.Our research results can play a reference and guide for future building disaster prevention design and public safety research.

Suggested Citation

  • Li, Yufei & Li, Chao & Guo, Chenglin & Huo, Feizhou, 2024. "Dynamic coupling model of FDS and cellular automata considering trampling behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
  • Handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s037843712300924x
    DOI: 10.1016/j.physa.2023.129369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712300924X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s037843712300924x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.