IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v629y2023ics0378437123007525.html
   My bibliography  Save this article

Criticality analysis in road networks with graph-theoretic measures, traffic assignment, and simulation

Author

Listed:
  • Mylonas, Chrysostomos
  • Mitsakis, Evangelos
  • Kepaptsoglou, Konstantinos

Abstract

Criticality serves as a foundational concept in the evaluation of the impact of disruptive events on the operation of road networks supporting the identification of road links whose unavailability affects to the greatest extent the mobility of people and goods. Several methods and techniques have been suggested so far for the quantification of criticality in road networks drawing from complex network theory, strategic transportation modeling, and traffic simulation. The current article provides a concise yet comprehensive overview of the relevant literature. Subsequently, it formulates a series of hybrid graph-theoretic measures that aim to evaluate, in a computationally efficient manner, the criticality of a road network’s links by respecting their topological attributes and incorporating the inputs/outputs of user equilibrium-based traffic assignment models, assuming that all links are available and operational. Moreover, it formulates a flow reduction-based criticality metric, quantified through microscopic traffic simulation based on the well-established theory on the Macroscopic Fundamental Diagram. The validity and application potential of both approaches are experimentally scrutinized in two tailor-made case studies. The results of the first case study reveal that traffic volume centrality and two variations of a hybrid measure estimating the demand weighted decrease in network efficiency or the increase in total travel time complement each other and sufficiently explain road link criticality, as assessed through two different metrics of increased computational intensity and accuracy. Building upon this finding, an algorithmic procedure for combining the previously mentioned measures is proposed, enabling the targeted sampling of critical road link candidates. The results of the second case study reveal that the macroscopic flow-density relationship may not provide valid insights into road link criticality due to the weak correlation of average network flow reduction with average travel time increase as well as the occasional and paradoxical increase in average network flow after certain road infrastructure disruptions. It is experimentally proven that this is attributed to the shifted route choice behavior of road users. It is also shown that the macroscopic flow-density relationship can adequately assess the impact of disruptive events when route choices are kept fixed.

Suggested Citation

  • Mylonas, Chrysostomos & Mitsakis, Evangelos & Kepaptsoglou, Konstantinos, 2023. "Criticality analysis in road networks with graph-theoretic measures, traffic assignment, and simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
  • Handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007525
    DOI: 10.1016/j.physa.2023.129197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123007525
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.