IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v629y2023ics0378437123007422.html
   My bibliography  Save this article

A privacy preserving graph neural networks framework by protecting user’s attributes

Author

Listed:
  • Zhou, Li
  • Wang, Jing
  • Fan, Dongmei
  • Zhang, Haifeng
  • Zhong, Kai

Abstract

Graph neural networks (GNNs) can learn the node representations to capture both node features and graph topology information through the message passing mechanism. However, since the information collected by GNNs is often used without authorization or maliciously attacked by hackers, which may result in leakage of users’ private information. To this end, we propose a privacy preserving GNNs framework, which not only protects the attribute privacy but also performs well in various downstream tasks. Specifically, when the users communicate with the third party, Paillier homomorphic encryption (HE) is used to encrypt users’ sensitive attribute information to prevent privacy leakage. Considering that the third party may be untrustworthy, differential privacy (DP) with Laplace mechanism is carried out to add noise to sensitive attribute information before transmission, so that the real attribute information is not accessible to the third party. Subsequently, the third party trains the GNNs model by using both the privacy preserving attribute information and public network topology information. Extensive experimental results show that, compared with the state-of-the-art methods, the privacy preserving GNNs still achieves satisfactory performance regarding different downstream tasks, such as node classification and link prediction while protecting the sensitive attributes of individuals.

Suggested Citation

  • Zhou, Li & Wang, Jing & Fan, Dongmei & Zhang, Haifeng & Zhong, Kai, 2023. "A privacy preserving graph neural networks framework by protecting user’s attributes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
  • Handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007422
    DOI: 10.1016/j.physa.2023.129187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123007422
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.