IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v589y2022ics0378437121009043.html
   My bibliography  Save this article

Ferrimagnetism and reentrant behavior in a coronene-like superlattice with double-layer

Author

Listed:
  • Si, Nan
  • Guan, Yin-Yan
  • Gao, Wei-Chun
  • Guo, An-Bang
  • Zhang, Yan-Li
  • Jiang, Wei

Abstract

Phase diagrams and temperature dependences of magnetizations in a coronene-like lattice have been studied based on the effective-field theory with correlations. For the spin-3/2 and 2 atoms in the superlattice with double-layer Ising model, both the transverse field and anisotropy are included. Novel features, such as the possibility of compensation and reentrant behaviors, are found for the ferrimagnetic properties in such systems.

Suggested Citation

  • Si, Nan & Guan, Yin-Yan & Gao, Wei-Chun & Guo, An-Bang & Zhang, Yan-Li & Jiang, Wei, 2022. "Ferrimagnetism and reentrant behavior in a coronene-like superlattice with double-layer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
  • Handle: RePEc:eee:phsmap:v:589:y:2022:i:c:s0378437121009043
    DOI: 10.1016/j.physa.2021.126671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121009043
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xue-Sheng & Zhang, Fan & Si, Nan & Meng, Jing & Zhang, Yan-Li & Jiang, Wei, 2019. "Unique magnetic and thermodynamic properties of a zigzag graphene nanoribbon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    2. L. A. Ponomarenko & R. V. Gorbachev & G. L. Yu & D. C. Elias & R. Jalil & A. A. Patel & A. Mishchenko & A. S. Mayorov & C. R. Woods & J. R. Wallbank & M. Mucha-Kruczynski & B. A. Piot & M. Potemski & , 2013. "Cloning of Dirac fermions in graphene superlattices," Nature, Nature, vol. 497(7451), pages 594-597, May.
    3. Jinhai Mao & Slaviša P. Milovanović & Miša Anđelković & Xinyuan Lai & Yang Cao & Kenji Watanabe & Takashi Taniguchi & Lucian Covaci & Francois M. Peeters & Andre K. Geim & Yuhang Jiang & Eva Y. Andrei, 2020. "Evidence of flat bands and correlated states in buckled graphene superlattices," Nature, Nature, vol. 584(7820), pages 215-220, August.
    4. Žukovič, M. & Bobák, A., 2015. "Mixed spin-1/2 and spin-1 Ising ferromagnets on a triangular lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 509-518.
    5. Du, A. & Liu, H.J. & Wang, B., 2004. "Magnetic properties in the Ising-mixed spin-12-spin-1 superlattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 583-596.
    6. Kaneyoshi, T. & Tucker, J.W. & Jaščur, M., 1992. "Differential operator technique for higher spin problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 186(3), pages 495-512.
    7. Lu, Zhao-Ming & Si, Nan & Wang, Ya-Ning & Zhang, Fan & Meng, Jing & Miao, Hai-Ling & Jiang, Wei, 2019. "Unique magnetism in different sizes of center decorated tetragonal nanoparticles with the anisotropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 438-456.
    8. Neto, Minos A. & de Sousa, J. Ricardo, 2013. "Phase diagrams of the transverse Ising antiferromagnet in the presence of the longitudinal magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 1-6.
    9. Si, Nan & Su, Xin & Meng, Jing & Miao, Hai-Ling & Zhang, Yan-Li & Jiang, Wei, 2020. "Magnetic properties of decorated 2D kagome-like lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    10. SáBarreto, F.C. & Fittipaldi, I.P., 1985. "Thermodynamical properties of the transverse Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 129(2), pages 360-373.
    11. Si, Nan & Zhang, Fan & Jiang, Wei & Zhang, Yan-Li, 2018. "Magnetic and thermodynamics properties graphene monolayer with defects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 641-648.
    12. Guorui Chen & Aaron L. Sharpe & Eli J. Fox & Ya-Hui Zhang & Shaoxin Wang & Lili Jiang & Bosai Lyu & Hongyuan Li & Kenji Watanabe & Takashi Taniguchi & Zhiwen Shi & T. Senthil & David Goldhaber-Gordon , 2020. "Publisher Correction: Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice," Nature, Nature, vol. 581(7807), pages 3-3, May.
    13. Guorui Chen & Aaron L. Sharpe & Eli J. Fox & Ya-Hui Zhang & Shaoxin Wang & Lili Jiang & Bosai Lyu & Hongyuan Li & Kenji Watanabe & Takashi Taniguchi & Zhiwen Shi & T. Senthil & David Goldhaber-Gordon , 2020. "Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice," Nature, Nature, vol. 579(7797), pages 56-61, March.
    14. Shi, Kaile & Jiang, Wei & Guo, Anbang & Wang, Kai & Wu, Chuang, 2018. "Magnetic and thermodynamic properties of Ising model with borophene structure in a longitudinal magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 11-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si, Nan & Su, Xin & Meng, Jing & Miao, Hai-Ling & Zhang, Yan-Li & Jiang, Wei, 2020. "Magnetic properties of decorated 2D kagome-like lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    2. Lu, Zhao-Ming & Si, Nan & Wang, Ya-Ning & Zhang, Fan & Meng, Jing & Miao, Hai-Ling & Jiang, Wei, 2019. "Unique magnetism in different sizes of center decorated tetragonal nanoparticles with the anisotropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 438-456.
    3. Junxiong Hu & Junyou Tan & Mohammed M. Al Ezzi & Udvas Chattopadhyay & Jian Gou & Yuntian Zheng & Zihao Wang & Jiayu Chen & Reshmi Thottathil & Jiangbo Luo & Kenji Watanabe & Takashi Taniguchi & Andre, 2023. "Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Xingdan Sun & Shihao Zhang & Zhiyong Liu & Honglei Zhu & Jinqiang Huang & Kai Yuan & Zhenhua Wang & Kenji Watanabe & Takashi Taniguchi & Xiaoxi Li & Mengjian Zhu & Jinhai Mao & Teng Yang & Jun Kang & , 2021. "Correlated states in doubly-aligned hBN/graphene/hBN heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Osamu Suzuki & Zhidong Zhang, 2021. "A Method of Riemann–Hilbert Problem for Zhang’s Conjecture 1 in a Ferromagnetic 3D Ising Model: Trivialization of Topological Structure," Mathematics, MDPI, vol. 9(7), pages 1-28, April.
    6. Hao Chen & Arpit Arora & Justin C. W. Song & Kian Ping Loh, 2023. "Gate-tunable anomalous Hall effect in Bernal tetralayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    7. Martin Claassen & Lede Xian & Dante M. Kennes & Angel Rubio, 2022. "Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    9. Wang, Kai & Yin, Peng & Zhang, Yanli & Jiang, Wei, 2018. "Phase diagram and magnetization of a graphene nanoisland structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 268-279.
    10. Pratap Chandra Adak & Subhajit Sinha & Debasmita Giri & Dibya Kanti Mukherjee & Chandan & L. D. Varma Sangani & Surat Layek & Ayshi Mukherjee & Kenji Watanabe & Takashi Taniguchi & H. A. Fertig & Arij, 2022. "Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Valerio Di Giulio & P. A. D. Gonçalves & F. Javier García de Abajo, 2022. "An image interaction approach to quantum-phase engineering of two-dimensional materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Si, Nan & Zhang, Fan & Jiang, Wei & Zhang, Yan-Li, 2018. "Magnetic and thermodynamics properties graphene monolayer with defects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 641-648.
    13. Zeya Li & Junwei Huang & Ling Zhou & Zian Xu & Feng Qin & Peng Chen & Xiaojun Sun & Gan Liu & Chengqi Sui & Caiyu Qiu & Yangfan Lu & Huiyang Gou & Xiaoxiang Xi & Toshiya Ideue & Peizhe Tang & Yoshihir, 2023. "An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Le Liu & Shihao Zhang & Yanbang Chu & Cheng Shen & Yuan Huang & Yalong Yuan & Jinpeng Tian & Jian Tang & Yiru Ji & Rong Yang & Kenji Watanabe & Takashi Taniguchi & Dongxia Shi & Jianpeng Liu & Wei Yan, 2022. "Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Shi, Xiaoling & Qi, Yang, 2015. "Existence of a dynamic compensation temperature of the mixed spin-1 and spin-3/2 Ising model within the effective-field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 93-100.
    16. Lu Cao & Wenyao Liu & Geng Li & Guangyang Dai & Qi Zheng & Yuxin Wang & Kun Jiang & Shiyu Zhu & Li Huang & Lingyuan Kong & Fazhi Yang & Xiancheng Wang & Wu Zhou & Xiao Lin & Jiangping Hu & Changqing J, 2021. "Two distinct superconducting states controlled by orientations of local wrinkles in LiFeAs," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    17. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Schmidt, M. & Dias, P.F., 2021. "Correlated cluster mean-field theory for Ising-like spin systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    19. Dongfei Wang & De-Liang Bao & Qi Zheng & Chang-Tian Wang & Shiyong Wang & Peng Fan & Shantanu Mishra & Lei Tao & Yao Xiao & Li Huang & Xinliang Feng & Klaus Müllen & Yu-Yang Zhang & Roman Fasel & Pasc, 2023. "Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. David Barcons Ruiz & Hanan Herzig Sheinfux & Rebecca Hoffmann & Iacopo Torre & Hitesh Agarwal & Roshan Krishna Kumar & Lorenzo Vistoli & Takashi Taniguchi & Kenji Watanabe & Adrian Bachtold & Frank H., 2022. "Engineering high quality graphene superlattices via ion milled ultra-thin etching masks," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:589:y:2022:i:c:s0378437121009043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.