IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v581y2021ics037843712100474x.html
   My bibliography  Save this article

Cascade phenomenon in multilayer networks with dependence groups and hierarchical structure

Author

Listed:
  • Zhang, Min
  • Wang, Xiaojuan
  • Jin, Lei
  • Song, Mei

Abstract

Many multiplex systems have hierarchical structures, such as communication networks. In this paper, we construct a cascading failure model on multilayer networks with dependence groups and hierarchical structure. We propose a new connection method between layers after generalizing the previous papers. Theoretical solutions of cascading model could be obtained by the approaches of mean-field approximation and generating function techniques. Through realizing simulations on ER and BA networks, we get the simulation results which are nearly consistent with the theoretical values. Besides, some factors affecting the network robustness are also analysed. When the initial removal probability p is small, as the group size g and the probability q1 increase, the network robustness exhibits better performance. In contrast, the network robustness decreases as g and q1 increase. The larger the failure threshold b and the recovery threshold a, the stronger the network robustness. With the decrease of the probability q2 that dependence groups connect to other nodes, the network performs better. Furthermore, our work may provide particular reference significance for enhancing the robustness of complex systems and maintaining the security of communication networks.

Suggested Citation

  • Zhang, Min & Wang, Xiaojuan & Jin, Lei & Song, Mei, 2021. "Cascade phenomenon in multilayer networks with dependence groups and hierarchical structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  • Handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s037843712100474x
    DOI: 10.1016/j.physa.2021.126201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712100474X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong Zhang & Lei Jin & Xiao Juan Wang, 2017. "Research on cascading failure in multilayer network with different coupling preference," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(04), pages 1-19, April.
    2. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    3. Mo Chen & Mei Song & Min Zhang & Lei Jin & Xiangyang Gong, 2019. "Cascading failure in multilayer network with asymmetric dependence group," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 30(09), pages 1-15, September.
    4. Peng, Hao & Kan, Zhe & Zhao, Dandan & Han, Jianmin & Lu, Jianfeng & Hu, Zhaolong, 2018. "Reliability analysis in interdependent smart grid systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 50-59.
    5. Hui Wang & Ming Li & Lin Deng & Bing-Hong Wang, 2015. "Percolation on Networks with Conditional Dependence Group," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-10, May.
    6. Zhou, Andu & Maletić, Slobodan & Zhao, Yi, 2018. "Robustness and percolation of holes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 459-468.
    7. Zhou, Jian & Huang, Ning & Coit, David W. & Felder, Frank A., 2018. "Combined effects of load dynamics and dependence clusters on cascading failures in network systems," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 116-126.
    8. Wang, Fan & Tian, Lixin & Du, Ruijin & Dong, Gaogao, 2018. "The robustness of interdependent weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 675-680.
    9. Wang, Hui & Li, Ming & Deng, Lin & Wang, Bing-Hong, 2018. "Robustness of networks with assortative dependence groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 195-200.
    10. Jiang, Zhong-Yuan & Liu, Zhi-Quan & He, Xuan & Ma, Jian-Feng, 2018. "Cascade phenomenon against subsequent failures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 472-480.
    11. Gergely Palla & Gergely Tibély & Enys Mones & Péter Pollner & Tamás Vicsek, 2015. "Hierarchical networks of scientific journals," Palgrave Communications, Palgrave Macmillan, vol. 1(palcomms2), pages 15016-15016, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Lin & Qi, Xiaogang & Liu, Lifang, 2023. "Robustness of networks with dependency groups considering fluctuating loads and recovery behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    2. Di Zhang & Limin Jia & Jin Ning & Yujiang Ye & Hao Sun & Ruifeng Shi, 2023. "Power Grid Structure Performance Evaluation Based on Complex Network Cascade Failure Analysis," Energies, MDPI, vol. 16(2), pages 1-15, January.
    3. Zhou, Jian & Coit, David W. & Felder, Frank A. & Wang, Dali, 2021. "Resiliency-based restoration optimization for dependent network systems against cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    5. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    6. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    7. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    8. Masa Tsuchiya & Vincent Piras & Alessandro Giuliani & Masaru Tomita & Kumar Selvarajoo, 2010. "Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    9. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    10. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    11. Rizman Žalik, Krista & Žalik, Borut, 2014. "A local multiresolution algorithm for detecting communities of unbalanced structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 380-393.
    12. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.
    13. Chen, Lei & Kou, Yingxin & Li, Zhanwu & Xu, An & Wu, Cheng, 2018. "Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 754-773.
    14. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    15. Giorgio Gronchi & Marco Raglianti & Fabio Giovannelli, 2021. "Network Theory and Switching Behaviors: A User Guide for Analyzing Electronic Records Databases," Future Internet, MDPI, vol. 13(9), pages 1-12, August.
    16. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.
    17. Shen Wang & Jun Wu & Yutao Zhang, 2018. "Consumer preference–enabled intelligent energy management for smart cities using game theoretic social tie," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    18. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    19. Zhang, Lan & Huang, Changwei, 2023. "Preferential selection to promote cooperation on degree–degree correlation networks in spatial snowdrift games," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    20. Jiang, Yawen & Jia, Caiyan & Yu, Jian, 2013. "An efficient community detection method based on rank centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2182-2194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s037843712100474x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.