IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v570y2021ics0378437121000868.html
   My bibliography  Save this article

Modeling the evolution of drinking behavior: A Statistical Physics perspective

Author

Listed:
  • Crokidakis, Nuno
  • Sigaud, Lucas

Abstract

In this work we study a simple compartmental model for drinking behavior evolution. The population is divided in 3 compartments regarding their alcohol consumption, namely Susceptible individuals S (nonconsumers), Moderate drinkers M and Risk drinkers R. The transitions among those states are ruled by probabilities. Despite the simplicity of the model, we observed the occurrence of two distinct nonequilibrium phase transitions to absorbing states. One of these states is composed only by Susceptible individuals S, with no drinkers (M=R=0). On the other hand, the other absorbing state is composed only by Risk drinkers R (S=M=0). Between these two steady states, we have the coexistence of the three subpopulations S, M and R. Comparison with abusive alcohol consumption data for Brazil shows a good agreement between the model’s results and the database.

Suggested Citation

  • Crokidakis, Nuno & Sigaud, Lucas, 2021. "Modeling the evolution of drinking behavior: A Statistical Physics perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
  • Handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000868
    DOI: 10.1016/j.physa.2021.125814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121000868
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouchaib Khajji & Abderrahim Labzai & Abdelfatah Kouidere & Omar Balatif & Mostafa Rachik, 2020. "A Discrete Mathematical Modeling of the Influence of Alcohol Treatment Centers on the Drinking Dynamics Using Optimal Control," Journal of Applied Mathematics, Hindawi, vol. 2020, pages 1-13, February.
    2. Galam, Serge & Jacobs, Frans, 2007. "The role of inflexible minorities in the breaking of democratic opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 366-376.
    3. Hai-Feng Huo & Na-Na Song, 2012. "Global Stability for a Binge Drinking Model with Two Stages," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-15, November.
    4. F. W. S. Lima & Tarik Hadzibeganovic & Dietrich Stauffer, 2014. "Evolution of tag-based cooperation on Erdős–Rényi random graphs," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(06), pages 1-10.
    5. Xun-Yang Wang & Hai-Feng Huo & Qing-Kai Kong & Wei-Xuan Shi, 2014. "Optimal Control Strategies in an Alcoholism Model," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-18, March.
    6. D. Stauffer & M. Sahimi, 2007. "Can a few fanatics influence the opinion of a large segment of a society?," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 147-152, May.
    7. Gorman, D.M. & Mezic, J. & Mezic, I. & Gruenewald, P.J., 2006. "Agent-based modeling of drinking behavior: A preliminary model and potential applications to theory and practice," American Journal of Public Health, American Public Health Association, vol. 96(11), pages 2055-2060.
    8. Nizamani, Sarwat & Memon, Nasrullah & Galam, Serge, 2014. "From public outrage to the burst of public violence: An epidemic-like model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 620-630.
    9. Rafael M. Brum & Nuno Crokidakis, 2017. "Dynamics of tax evasion through an epidemic-like model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(02), pages 1-14, February.
    10. Shuang-Hong Ma & Hai-Feng Huo & Xin-You Meng, 2015. "Modelling Alcoholism as a Contagious Disease: A Mathematical Model with Awareness Programs and Time Delay," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-13, October.
    11. Serge Galam & Marco Alberto Javarone, 2016. "Modeling Radicalization Phenomena in Heterogeneous Populations," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    12. Nuno Crokidakis & Jorge S. Sá Martins, 2018. "Can honesty survive in a corrupt parliament?," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(10), pages 1-10, October.
    13. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    14. Huo, Hai-Feng & Xue, Hui-Ning & Xiang, Hong, 2018. "Dynamics of an alcoholism model on complex networks with community structure and voluntary drinking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 880-890.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crokidakis, Nuno & Galam, Serge, 2022. "After 2018 Bolsonaro victory, is a 2022 remake feasible?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Weimer-Jehle, Wolfgang, 2008. "Cross-impact balances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3689-3700.
    3. Santoprete, Manuele & Xu, Fei, 2018. "Global stability in a mathematical model of de-radicalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 151-161.
    4. Serge Galam & Marco Alberto Javarone, 2016. "Modeling Radicalization Phenomena in Heterogeneous Populations," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    5. Şengül, Taylan & Yıldız, Esmanur, 2021. "A dynamical systems approach to the interplay between tobacco smokers, electronic-cigarette smokers and smoking quitters," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Moon-Hyun Kim & Jiwon Lee & Hee-Jin Oh & Tsolmon Bayarsaikhan & Tae-Hyoung Tommy Gim, 2023. "A modeling study of the effect of social distancing policies on the early spread of coronavirus disease 2019: a case of South Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 71(1), pages 225-242, August.
    7. Michael T Gastner & Károly Takács & Máté Gulyás & Zsuzsanna Szvetelszky & Beáta Oborny, 2019. "The impact of hypocrisy on opinion formation: A dynamic model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    8. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    9. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    10. Nizamani, Sarwat & Memon, Nasrullah & Galam, Serge, 2014. "From public outrage to the burst of public violence: An epidemic-like model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 620-630.
    11. Charcon, D.Y. & Monteiro, L.H.A., 2020. "A multi-agent system to predict the outcome of a two-round election," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    12. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    13. Khalil, Nagi & Toral, Raúl, 2019. "The noisy voter model under the influence of contrarians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 81-92.
    14. Zhu, Hui & Huang, Cheng & Lu, Rongxing & Li, Hui, 2016. "Modelling information dissemination under privacy concerns in social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 53-63.
    15. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    16. F. Jacobs & S. Galam, 2019. "Two-Opinions-Dynamics Generated By Inflexibles And Non-Contrarian And Contrarian Floaters," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-30, June.
    17. Qian, Shen & Liu, Yijun & Galam, Serge, 2015. "Activeness as a key to counter democratic balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 187-196.
    18. Paolo Pellizzari & Elena Sartori & Marco Tolotti, 2015. "Optimal Policies In Two-Step Binary Games Under Social Pressure And Limited Resources," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(05n06), pages 1-16, August.
    19. Patryk Siedlecki & Janusz Szwabiński & Tomasz Weron, 2016. "The Interplay Between Conformity and Anticonformity and its Polarizing Effect on Society," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(4), pages 1-9.
    20. Ben Fitzpatrick & Jason Martinez, 2012. "Agent-Based Modeling of Ecological Niche Theory and Assortative Drinking," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(2), pages 1-4.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.