IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v522y2019icp80-87.html
   My bibliography  Save this article

A cluster-growing dimension of complex networks: From the view of node closeness centrality

Author

Listed:
  • Wei, Bo
  • Deng, Yong

Abstract

The cluster-growing method has been widely used to measure the fractal dimension of complex networks. In this method, a seed node is chosen at random and the number of nodes centered at the seed node is calculated. The procedure is then repeated by choosing many seed nodes at random and the total number of nodes within the same fixed length is averaged over the number of seed nodes. In order to improve the statistics, one has to repeat the calculations for sufficient number of seed nodes. However, most real world networks are featured with heterogeneous properties and it is possible that some of the seed nodes are located at the periphery of the networks. In this paper, a modified cluster-growing dimension of complex networks based on closeness centrality of nodes is proposed. By observing and comparing the distinction dimension by choosing the seeds via the proposed method, the original method, the hubs-based method and the CI-based method in a number of networks, we conclude that the dimension of complex networks can be better obtained by choosing the seeds located in the center of complex networks.

Suggested Citation

  • Wei, Bo & Deng, Yong, 2019. "A cluster-growing dimension of complex networks: From the view of node closeness centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 80-87.
  • Handle: RePEc:eee:phsmap:v:522:y:2019:i:c:p:80-87
    DOI: 10.1016/j.physa.2019.01.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301323
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Wei & Deng, Yong, 2018. "Entropic methodology for entanglement measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 693-697.
    2. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    3. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    4. Carletti, Timoteo & Righi, Simone, 2010. "Weighted Fractal Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2134-2142.
    5. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    6. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    7. M. T. Gastner & M. E.J. Newman, 2006. "The spatial structure of networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(2), pages 247-252, January.
    8. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    9. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    10. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    11. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.
    12. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    13. Xinyi Zhou & Yong Hu & Yong Deng & Felix T. S. Chan & Alessio Ishizaka, 2018. "A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP," Annals of Operations Research, Springer, vol. 271(2), pages 1045-1066, December.
    14. Xingyuan Wang & Zhenzhen Liu & Mogei Wang, 2013. "The Correlation Fractal Dimension Of Complex Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(05), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Sá, Luiz Alberto Pereira & Zielinski, Kallil M.C. & Rodrigues, Érick Oliveira & Backes, André R. & Florindo, João B. & Casanova, Dalcimar, 2022. "A novel approach to estimated Boulingand-Minkowski fractal dimension from complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Dong, Chen & Xu, Guiqiong & Meng, Lei & Yang, Pingle, 2022. "CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Muneeb A Khan & Muazzam A Khan & Anis U Rahman & Asad Waqar Malik & Safdar A Khan, 2019. "Exploiting cooperative sensing for accurate target tracking in industrial Internet of things," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    5. Wen, Tao & Deng, Yong, 2020. "The vulnerability of communities in complex networks: An entropy approach," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Yu, Hui & Chen, LuYuan & Yao, JingTao & Wang, XingNan, 2019. "A three-way clustering method based on an improved DBSCAN algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    7. Fu, Xin & Qiang, Yongjie & Liu, Xuxu & Jiang, Ying & Cui, Zhiwei & Zhang, Deyu & Wang, Jianwei, 2022. "Will multi-industry supply chains' resilience under the impact of COVID-19 pandemic be different? A perspective from China's highway freight transport," Transport Policy, Elsevier, vol. 118(C), pages 165-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    2. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    3. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    4. Yige Xue & Yong Deng, 2020. "Refined Expected Value Decision Rules under Orthopair Fuzzy Environment," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    5. Ahmad, Amreen & Ahmad, Tanvir & Bhatt, Abhishek, 2020. "HWSMCB: A community-based hybrid approach for identifying influential nodes in the social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Sun, Lina & Huang, Ning & Li, Ruiying & Bai, Yanan, 2019. "A new fractal reliability model for networks with node fractal growth and no-loop," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 699-707.
    7. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.
    8. Xiaozhuan Gao & Yong Deng, 2019. "The generalization negation of probability distribution and its application in target recognition based on sensor fusion," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    9. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    10. Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    11. de Sá, Luiz Alberto Pereira & Zielinski, Kallil M.C. & Rodrigues, Érick Oliveira & Backes, André R. & Florindo, João B. & Casanova, Dalcimar, 2022. "A novel approach to estimated Boulingand-Minkowski fractal dimension from complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Huang, Zhiming & Yang, Lin & Jiang, Wen, 2019. "Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 417-428.
    13. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Aldrich, Preston R. & El-Zabet, Jermeen & Hassan, Seerat & Briguglio, Joseph & Aliaj, Enela & Radcliffe, Maria & Mirza, Taha & Comar, Timothy & Nadolski, Jeremy & Huebner, Cynthia D., 2015. "Monte Carlo tests of small-world architecture for coarse-grained networks of the United States railroad and highway transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 32-39.
    15. Rosenberg, Eric, 2018. "Generalized Hausdorff dimensions of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 1-17.
    16. Le, Anbo & Gao, Fei & Xi, Lifeng & Yin, Shuhua, 2015. "Complex networks modeled on the Sierpinski gasket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 646-657.
    17. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    18. Zengwang Xu & Daniel Sui, 2007. "Small-world characteristics on transportation networks: a perspective from network autocorrelation," Journal of Geographical Systems, Springer, vol. 9(2), pages 189-205, June.
    19. Moreno-Pulido, Soledad & Pavón-Domínguez, Pablo & Burgos-Pintos, Pedro, 2021. "Temporal evolution of multifractality in the Madrid Metro subway network," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Huang, Da-Wen & Yu, Zu-Guo & Anh, Vo, 2017. "Multifractal analysis and topological properties of a new family of weighted Koch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 695-705.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:522:y:2019:i:c:p:80-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.