IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v522y2019icp315-323.html
   My bibliography  Save this article

Rise and fall of historic tram networks: Logistic approximation and discontinuous events

Author

Listed:
  • Doménech-Carbó, Antonio

Abstract

A logistic approximation was used to describe, in terms of total length (L) and population (H) variables, the growth and decay of historic transportation systems. Three successive stages, separated for sharp discontinuities were detected for several European tramway and metro systems, corresponding to a fast initial growth followed by an intermediate step of slow growth and a final stage of rapid decay. A common, generalized behaviour was obtained in the L/H vs. H variations relative to critical values of L and H parameters defined from the maximum in the L/H ratio.

Suggested Citation

  • Doménech-Carbó, Antonio, 2019. "Rise and fall of historic tram networks: Logistic approximation and discontinuous events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 315-323.
  • Handle: RePEc:eee:phsmap:v:522:y:2019:i:c:p:315-323
    DOI: 10.1016/j.physa.2019.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301554
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Tao & Qin, Kun & Shan, Jie, 2014. "An exploratory analysis on the evolution of the US airport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 266-279.
    2. Yang, Zhijie & Chen, Xiaolong, 2018. "Evolution assessment of Shanghai Urban Rail Transit Network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1263-1274.
    3. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    4. West, Bruce J., 2015. "Exact solution to fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 103-108.
    5. Sybil Derrible & Christopher Kennedy, 2011. "Applications of Graph Theory and Network Science to Transit Network Design," Transport Reviews, Taylor & Francis Journals, vol. 31(4), pages 495-519.
    6. Chen, Yanguang, 2012. "Fractal dimension evolution and spatial replacement dynamics of urban growth," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 115-124.
    7. D’Ovidio, Mirko & Loreti, Paola, 2018. "Solutions of fractional logistic equations by Euler’s numbers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1081-1092.
    8. Redelico, Francisco O. & Proto, Araceli N. & Ausloos, Marcel, 2008. "Power law for the duration of recession and prosperity in Latin American countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(25), pages 6330-6336.
    9. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    10. He, Hong-di & Wang, Jun-li & Wei, Hai-rui & Ye, Cheng & Ding, Yi, 2016. "Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 518-525.
    11. Zhang, Jun & Cao, Xian-Bin & Du, Wen-Bo & Cai, Kai-Quan, 2010. "Evolution of Chinese airport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3922-3931.
    12. M Batty & P Longley & S Fotheringham, 1989. "Urban Growth and Form: Scaling, Fractal Geometry, and Diffusion-Limited Aggregation," Environment and Planning A, , vol. 21(11), pages 1447-1472, November.
    13. Du, Wen-Bo & Liang, Bo-Yuan & Hong, Chen & Lordan, Oriol, 2017. "Analysis of the Chinese provincial air transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 579-586.
    14. Zou, Liuhua & Pei, Wenjiang & Li, Tao & He, Zhenya & Cheung, Yiuming, 2007. "Topological fractal networks introduced by mixed degree distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 592-600.
    15. Ausloos, M. & Petroni, F., 2009. "Statistical dynamics of religion evolutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4438-4444.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doménech-Carbó, Antonio & Doménech-Casasús, Clara, 2021. "The evolution of COVID-19: A discontinuous approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    2. Min Su & Weixin Luan & Zeyang Li & Shulin Wan & Zhenchao Zhang, 2019. "Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    3. Doménech, Antonio, 2009. "A topological phase transition between small-worlds and fractal scaling in urban railway transportation networks?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4658-4668.
    4. Du, Wen-Bo & Zhou, Xing-Lian & Lordan, Oriol & Wang, Zhen & Zhao, Chen & Zhu, Yan-Bo, 2016. "Analysis of the Chinese Airline Network as multi-layer networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 108-116.
    5. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    7. Chen, Yanguang, 2014. "Urban chaos and replacement dynamics in nature and society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 373-384.
    8. Zhang, Yaping & Peng, Ting & Fu, Chuanyun & Cheng, Shaowu, 2016. "Simulation analysis of factors affecting air route connection in China," Journal of Air Transport Management, Elsevier, vol. 50(C), pages 12-20.
    9. Bai, Bingfeng, 2022. "Strategic business management for airport alliance: A complex network approach to simulation robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    10. Min Su & Baoyang Hu & Yipeng Jiang & Zhenchao Zhang & Zeyang Li, 2022. "Relationship between the Chinese Main Air Transport Network and COVID-19 Pandemic Transmission," Mathematics, MDPI, vol. 10(13), pages 1-17, July.
    11. Hongqi Li & Haotian Wang & Ming Bai & Bin Duan, 2018. "The Structure and Periodicity of the Chinese Air Passenger Network," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    12. Wandelt, Sebastian & Sun, Xiaoqian, 2015. "Evolution of the international air transportation country network from 2002 to 2013," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 55-78.
    13. Leonidas Siozos-Rousoulis & Dimitri Robert & Wouter Verbeke, 2021. "A study of the U.S. domestic air transportation network: temporal evolution of network topology and robustness from 2001 to 2016," Journal of Transportation Security, Springer, vol. 14(1), pages 55-78, June.
    14. Chen, Yanguang & Huang, Linshan, 2019. "Modeling growth curve of fractal dimension of urban form of Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1038-1056.
    15. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    16. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    17. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    18. Area, I. & Nieto, J.J., 2021. "Power series solution of the fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    19. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    20. Zhang, Jianhua & Xu, Xiaoming & Hong, Liu & Wang, Shuliang & Fei, Qi, 2011. "Networked analysis of the Shanghai subway network, in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4562-4570.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:522:y:2019:i:c:p:315-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.