IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v503y2018icp491-502.html
   My bibliography  Save this article

An analysis on the traffic processing efficiency of a combination of serial and parallel bottlenecks

Author

Listed:
  • Quek, Wei-Liang
  • Chung, Ning Ning
  • Chew, Lock Yue

Abstract

By means of the Nagel–Schreckenberg model, we have investigated into the maximum vehicular flow rate of traffic processing bottlenecks. The evaluated analytical form of this flow rate is found to give quantitative insights into the underlying physics of collective vehicular motions constrained by these bottlenecks. Our analysis shows that for large-scale expansion, a new class of processing bottleneck known as the serial bottleneck is more efficient than the conventional parallel bottleneck in the absence of human driving behavior. When characteristics such as slow-to-start is considered in the model, the consequential delay due to human reaction time not only degrade the overall efficiency, it also diminishes the efficacy of serial processing such that a serial bottleneck is no longer tenable for traffic processing. These results point to the fundamental importance of optimizing traffic efficiency, which we illustrate by elucidating the detailed mechanisms with which vehicles interact collectively in the bottlenecks. In particular, we demonstrate that by constructing combinations of serial and parallel bottlenecks, optimal efficiencies are achieved via configurations with few (many) lanes of a large (small) number of serial units when the processing time is short (long). A direct implication of these results is that autonomous self-driving vehicles could serve to improve the transportation capacity for the densely populated urban cities of the future, due to the intrinsically more efficient collective vehicular motions through these bottlenecks.

Suggested Citation

  • Quek, Wei-Liang & Chung, Ning Ning & Chew, Lock Yue, 2018. "An analysis on the traffic processing efficiency of a combination of serial and parallel bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 491-502.
  • Handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:491-502
    DOI: 10.1016/j.physa.2018.02.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118301675
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:491-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.