IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v500y2018icp155-161.html
   My bibliography  Save this article

Effective augmentation of networked systems and enhancing pinning controllability

Author

Listed:
  • Jalili, Mahdi

Abstract

Controlling dynamics of networked systems to a reference state, known as pinning control, has many applications in science and engineering. In this paper, we introduce a method for effective augmentation of networked systems, while also providing high levels of pinning controllability for the final augmented network. The problem is how to connect a sub-network to an already existing network such that the pinning controllability is maximised. We consider the eigenratio of the augmented Laplacian matrix as a pinning controllability metric, and use graph perturbation theory to approximate the influence of edge addition on the eigenratio. The proposed metric can be effectively used to find the inter-network links connecting the disjoint networks. Also, an efficient link rewiring approach is proposed to further optimise the pinning controllability of the augmented network. We provide numerical simulations on synthetic networks and show that the proposed method is more effective than heuristic ones.

Suggested Citation

  • Jalili, Mahdi, 2018. "Effective augmentation of networked systems and enhancing pinning controllability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 155-161.
  • Handle: RePEc:eee:phsmap:v:500:y:2018:i:c:p:155-161
    DOI: 10.1016/j.physa.2018.02.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302073
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Chenbo & Wang, Jinbao & Xiang, Yun & Wu, Zhefu & Yu, Li & Xuan, Qi, 2017. "Pinning control of clustered complex networks with different size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 184-192.
    2. Zhou, Ming-Yang & He, Xingsheng & Fu, Zhong-Qian & Liao, Hao & Cai, Shi-min & Zhuo, Zhao, 2016. "Diffusion inspires selection of pinning nodes in pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 120-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:500:y:2018:i:c:p:155-161. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.