IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v486y2017icp782-796.html
   My bibliography  Save this article

An improved shuffled frog leaping algorithm based evolutionary framework for currency exchange rate prediction

Author

Listed:
  • Dash, Rajashree

Abstract

Forecasting purchasing power of one currency with respect to another currency is always an interesting topic in the field of financial time series prediction. Despite the existence of several traditional and computational models for currency exchange rate forecasting, there is always a need for developing simpler and more efficient model, which will produce better prediction capability. In this paper, an evolutionary framework is proposed by using an improved shuffled frog leaping (ISFL) algorithm with a computationally efficient functional link artificial neural network (CEFLANN) for prediction of currency exchange rate. The model is validated by observing the monthly prediction measures obtained for three currency exchange data sets such as USD/CAD, USD/CHF, and USD/JPY accumulated within same period of time. The model performance is also compared with two other evolutionary learning techniques such as Shuffled frog leaping algorithm and Particle Swarm optimization algorithm. Practical analysis of results suggest that, the proposed model developed using the ISFL algorithm with CEFLANN network is a promising predictor model for currency exchange rate prediction compared to other models included in the study.

Suggested Citation

  • Dash, Rajashree, 2017. "An improved shuffled frog leaping algorithm based evolutionary framework for currency exchange rate prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 782-796.
  • Handle: RePEc:eee:phsmap:v:486:y:2017:i:c:p:782-796
    DOI: 10.1016/j.physa.2017.05.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117305629
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.05.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajashree Dash & Pradipta Kishore Dash, 2016. "Prediction of Financial Time Series Data using Hybrid Evolutionary Legendre Neural Network: Evolutionary LENN," International Journal of Applied Evolutionary Computation (IJAEC), IGI Global, vol. 7(1), pages 16-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Sibao & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2019. "Evolutionary support vector machine for RMB exchange rate forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 692-704.
    2. Samuka Mohanty & Rajashree Dash, 2022. "Neural Network-Based Bitcoin Pricing Using a New Mutated Climb Monkey Algorithm with TOPSIS Analysis for Sustainable Development," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
    3. Tarun Kumar Sharma & Divya Prakash, 2020. "Air pollution emissions control using shuffled frog leaping algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 332-339, April.
    4. Tripathi Manas & Kumar Saurabh & Inani Sarveshwar Kumar, 2021. "Exchange Rate Forecasting Using Ensemble Modeling for Better Policy Implications," Journal of Time Series Econometrics, De Gruyter, vol. 13(1), pages 43-71, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:486:y:2017:i:c:p:782-796. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.