IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v463y2016icp310-319.html
   My bibliography  Save this article

The dynamical modeling and simulation analysis of the recommendation on the user–movie network

Author

Listed:
  • Zhang, Shujuan
  • Jin, Zhen
  • Zhang, Juan

Abstract

At present, most research about the recommender system is based on graph theory and algebraic methods, but these methods cannot predict the evolution of the system with time under the recommendation method, and cannot dynamically analyze the long-term utility of the recommendation method. However, these two aspects can be studied by the dynamical method, which essentially investigates the intrinsic evolution mechanism of things, and is widely used to study a variety of actual problems. So, in this paper, network dynamics is used to study the recommendation on the user–movie network, which consists of users and movies, and the movies are watched either by the personal search or through the recommendation. Firstly, dynamical models are established to characterize the personal search and the system recommendation mechanism: the personal search model, the random recommendation model, the preference recommendation model, the degree recommendation model and the hybrid recommendation model. The rationality of the models established is verified by comparing the stochastic simulation with the numerical simulation. Moreover, the validity of the recommendation methods is evaluated by studying the movie degree, which is defined as the number of the movie that has been watched. Finally, we combine the personal search and the recommendation to establish a more general model. The change of the average degree of all the movies is given with the strength of the recommendation. Results show that for each recommendation method, the change of the movie degree is different, and is related to the initial degree of movies, the adjacency matrix A representing the relation between users and movies, the time t. Additionally, we find that in a long time, the degree recommendation is not as good as that in a short time, which fully demonstrates the advantage of the dynamical method. For the whole user–movie system, the preference recommendation is the best.

Suggested Citation

  • Zhang, Shujuan & Jin, Zhen & Zhang, Juan, 2016. "The dynamical modeling and simulation analysis of the recommendation on the user–movie network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 310-319.
  • Handle: RePEc:eee:phsmap:v:463:y:2016:i:c:p:310-319
    DOI: 10.1016/j.physa.2016.07.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116304800
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.07.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zi-Ke & Yu, Lu & Fang, Kuan & You, Zhi-Qiang & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Website-oriented recommendation based on heat spreading and tag-aware collaborative filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 82-88.
    2. Jin-Hu Liu & Tao Zhou & Zi-Ke Zhang & Zimo Yang & Chuang Liu & Wei-Min Li, 2014. "Promoting Cold-Start Items in Recommender Systems," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-13, December.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    4. Liu, Run-Ran & Liu, Jian-Guo & Jia, Chun-Xiao & Wang, Bing-Hong, 2010. "Personal recommendation via unequal resource allocation on bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3282-3289.
    5. Bernardo A. Huberman & Lada A. Adamic, 1999. "Growth dynamics of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 131-131, September.
    6. Zhang, Zi-Ke & Zhou, Tao & Zhang, Yi-Cheng, 2010. "Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 179-186.
    7. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    8. Da-Cheng Nie & Zi-Ke Zhang & Jun-Lin Zhou & Yan Fu & Kui Zhang, 2014. "Information Filtering on Coupled Social Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-15, July.
    9. Moradi, Parham & Ahmadian, Sajad & Akhlaghian, Fardin, 2015. "An effective trust-based recommendation method using a novel graph clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 462-481.
    10. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    11. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Ya-Hui & Dong, Qiang & Sun, Chong-Jing & Nie, Da-Cheng & Fu, Yan, 2016. "Diffusion-like recommendation with enhanced similarity of objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 708-715.
    2. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    3. Zhengzheng Pan, 2012. "Opinions and Networks: How Do They Effect Each Other," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 157-171, February.
    4. Sodam Baek & Kibae Kim & Jorn Altmann, 2014. "Role of Platform Providers in Service Networks: The Case of Salesforce.com AppExchange," TEMEP Discussion Papers 2014112, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised May 2014.
    5. Liu, Jin-Hu & Zhu, Yu-Xiao & Zhou, Tao, 2016. "Improving personalized link prediction by hybrid diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 199-207.
    6. Wang, Junjie & Zhou, Shuigeng & Guan, Jihong, 2011. "Characteristics of real futures trading networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 398-409.
    7. Chen, Qinghua & Chen, Shenghui, 2007. "A highly clustered scale-free network evolved by random walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 773-781.
    8. Geng, Bingrui & Li, Lingling & Jiao, Licheng & Gong, Maoguo & Cai, Qing & Wu, Yue, 2015. "NNIA-RS: A multi-objective optimization based recommender system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 383-397.
    9. Liu, Chen & Wang, Jiang & Yu, Haitao & Deng, Bin & Wei, Xile & Sun, Jianbing & Chen, Yingyuan, 2013. "The effects of time delay on the synchronization transitions in a modular neuronal network with hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 47(C), pages 54-65.
    10. Ling Zhang & Manman Luo & Robert J. Boncella, 2020. "Product information diffusion in a social network," Electronic Commerce Research, Springer, vol. 20(1), pages 3-19, March.
    11. Gianna Giudicati & Massimo Riccaboni & Anna Romiti, 2013. "Experience, socialization and customer retention: Lessons from the dance floor," Marketing Letters, Springer, vol. 24(4), pages 409-422, December.
    12. Ikeda, N., 2007. "Network formed by traces of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 701-713.
    13. Çavuşoğlu, Abdullah & Türker, İlker, 2013. "Scientific collaboration network of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 9-18.
    14. Li, Hong-Li & Hu, Cheng & Jiang, Yao-Lin & Wang, Zuolei & Teng, Zhidong, 2016. "Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 142-149.
    15. Kibae Kim & Jörn Altmann, 2015. "Effect of Homophily on Network Formation," TEMEP Discussion Papers 2015121, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2017.
    16. Hung-Chun Huang & Hsin-Yu Shih & Tsung-Han Ke, 2017. "Structure of a patent transaction network," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 25-45, April.
    17. Laurie A. Schintler & Aura Reggiani & Rajendra Kulkarni & Peter Nijkamp, 2003. "Scale-Free Phenomena in Communication Networks: A Cross-Atlantic Comparison," ERSA conference papers ersa03p436, European Regional Science Association.
    18. Kibae Kim & Jorn Altmann & Junseok Hwang, 2010. "An Analysis of the Openness of the Web2.0 Service Network Based on Two Sets of Indices for Measuring the Impact of Service Ownership," TEMEP Discussion Papers 201067, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Oct 2010.
    19. Ghaderi, Mohammad, 2022. "Public health interventions in the face of pandemics: Network structure, social distancing, and heterogeneity," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1016-1031.
    20. Dorogovtsev, S.N. & Mendes, J.F.F. & Oliveira, J.G., 2006. "Frequency of occurrence of numbers in the World Wide Web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 548-556.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:463:y:2016:i:c:p:310-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.