IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v455y2016icp79-91.html
   My bibliography  Save this article

Effects of vascularization on cancer nanochemotherapy outcomes

Author

Listed:
  • Paiva, L.R.
  • Ferreira, S.C.
  • Martins, M.L.

Abstract

Cancer therapy requires anticancer agents capable of efficient and uniform systemic delivery. One promising route to their development is nanotechnology. Here, a previous model for cancer chemotherapy based on a nanosized drug carrier (Paiva et al., 2011) is extended by including tissue vasculature and a three-dimensional growth. We study through computer simulations the therapy against tumors demanding either large or small nutrient supplies growing under different levels of tissue vascularization. Our results indicate that highly vascularized tumors demand more aggressive therapies (larger injected doses administrated at short intervals) than poorly vascularized ones. Furthermore, nanoparticle endocytic rate by tumor cells, not its selectivity, is the major factor that determines the therapeutic success. Finally, our finds indicate that therapies combining cytotoxic agents with antiangiogenic drugs that reduce the abnormal tumor vasculature, instead of angiogenic drugs that normalize it, can lead to successful treatments using feasible endocytic rates and administration intervals.

Suggested Citation

  • Paiva, L.R. & Ferreira, S.C. & Martins, M.L., 2016. "Effects of vascularization on cancer nanochemotherapy outcomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 79-91.
  • Handle: RePEc:eee:phsmap:v:455:y:2016:i:c:p:79-91
    DOI: 10.1016/j.physa.2016.02.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116002430
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.02.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vikash P. Chauhan & John D. Martin & Hao Liu & Delphine A. Lacorre & Saloni R. Jain & Sergey V. Kozin & Triantafyllos Stylianopoulos & Ahmed S. Mousa & Xiaoxing Han & Pichet Adstamongkonkul & Zoran Po, 2013. "Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxim Kuznetsov, 2021. "Combined Influence of Nutrient Supply Level and Tissue Mechanical Properties on Benign Tumor Growth as Revealed by Mathematical Modeling," Mathematics, MDPI, vol. 9(18), pages 1-27, September.
    2. Guiraldello, Rafael T. & Martins, Marcelo L. & Mancera, Paulo F.A., 2016. "Evaluating the efficacies of Maximum Tolerated Dose and metronomic chemotherapies: A mathematical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 145-156.
    3. Myrofora Panagi & Fotios Mpekris & Pengwen Chen & Chrysovalantis Voutouri & Yasuhiro Nakagawa & John D. Martin & Tetsuro Hiroi & Hiroko Hashimoto & Philippos Demetriou & Chryso Pierides & Rekha Samuel, 2022. "Polymeric micelles effectively reprogram the tumor microenvironment to potentiate nano-immunotherapy in mouse breast cancer models," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Duk Ki Kim & Juhee Jeong & Dong Sun Lee & Do Young Hyeon & Geon Woo Park & Suwan Jeon & Kyung Bun Lee & Jin-Young Jang & Daehee Hwang & Ho Min Kim & Keehoon Jung, 2022. "PD-L1-directed PlGF/VEGF blockade synergizes with chemotherapy by targeting CD141+ cancer-associated fibroblasts in pancreatic cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Yen-Ho Lai & Chia-Yu Su & Hung-Wei Cheng & Chao-Yi Chu & Long-Bin Jeng & Chih-Sheng Chiang & Woei-Cherng Shyu & San-Yuan Chen, 2023. "Stem cell–nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:455:y:2016:i:c:p:79-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.