IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v421y2015icp347-354.html
   My bibliography  Save this article

Random coupling strength-induced synchronization transitions in neuronal network with delayed electrical and chemical coupling

Author

Listed:
  • Wu, Yanan
  • Gong, Yubing
  • Wang, Qi

Abstract

Regulating the coupling strength of neurons by noise, we numerically study the effect of the fluctuation of coupling strength on the synchronization of scale-free neuronal network with time delays. It is found that the neurons exhibit synchronization transitions when noise intensity is varied, and the synchronization transitions are delay-dependent and are enhanced at certain time delays. This phenomenon becomes stronger for chemical coupling than for electrical coupling. As network average degree increases, this phenomenon decreases monotonically for electrical coupling. However, for chemical coupling there is an optimal network average degree at which the phenomenon becomes strongest. These results show that the fluctuation of coupling strength can induce different synchronization transitions in scale-free neuronal network. This implies that random coupling strength could play a crucial role in the information transmission in neural systems.

Suggested Citation

  • Wu, Yanan & Gong, Yubing & Wang, Qi, 2015. "Random coupling strength-induced synchronization transitions in neuronal network with delayed electrical and chemical coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 347-354.
  • Handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:347-354
    DOI: 10.1016/j.physa.2014.11.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114010140
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.11.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Baoying & Gong, Yubing & Xie, Huijuan & Wang, Qi, 2016. "Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 372-378.
    2. Xie, Huijuan & Gong, Yubing, 2017. "Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 80-85.
    3. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:347-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.