IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v412y2014icp149-156.html
   My bibliography  Save this article

Synchronization analysis of complex networks with multi-weights and its application in public traffic network

Author

Listed:
  • An, Xin-lei
  • Zhang, Li
  • Li, Yin-zhen
  • Zhang, Jian-gang

Abstract

On the basis of traditional weighted network, we study a new complex network model with multi-weights, which has one or several different types of weights between any two nodes. According to the method of network split, we split the complex network with multi-weights into several different complex networks with single weight, and study its global synchronization. Taking bus lines as the network nodes, a new public traffic roads network model with multi-weights is established by the proposed network model and space R modeling approach. Then based on the Lyapunov stability theory, the criteria is designed for the global synchronization of the public traffic roads networks with multi-weights. By changing the different weights and taking the Lorenz chaotic system for example, some numerical examples are given to discuss the balance of the whole public traffic roads network.

Suggested Citation

  • An, Xin-lei & Zhang, Li & Li, Yin-zhen & Zhang, Jian-gang, 2014. "Synchronization analysis of complex networks with multi-weights and its application in public traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 149-156.
  • Handle: RePEc:eee:phsmap:v:412:y:2014:i:c:p:149-156
    DOI: 10.1016/j.physa.2014.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114005081
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xiaoqun, 2008. "Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 997-1008.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xiu-Lian & Shi, Jin-Xuan & Wang, Jun & Li, Wenfei, 2021. "Long-range correlation and critical fluctuations in coevolution networks of protein sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    2. Bin Yang & Xin Wang & Yongju Zhang & Yuhua Xu & Wuneng Zhou, 2019. "Finite-Time Synchronization and Synchronization Dynamics Analysis for Two Classes of Markovian Switching Multiweighted Complex Networks from Synchronization Control Rule Viewpoint," Complexity, Hindawi, vol. 2019, pages 1-17, March.
    3. Yu Wei & Sun Ning, 2018. "Establishment and Analysis of the Supernetwork Model for Nanjing Metro Transportation System," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    4. Zhang, Qi & Luo, Chuanhai & Li, Meizhu & Deng, Yong & Mahadevan, Sankaran, 2015. "Tsallis information dimension of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 707-717.
    5. Yuhong Li & Guanghong Gong & Ni Li, 2018. "A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-23, March.
    6. Zhang, Chunmei & Yang, Yinghui, 2020. "Synchronization of stochastic multi-weighted complex networks with Lévy noise based on graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Zhang, Chunmei & Chen, Tianrui, 2018. "Exponential stability of stochastic complex networks with multi-weights based on graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 602-611.
    8. Zhang, Chunmei & Han, Bang-Sheng, 2020. "Stability analysis of stochastic delayed complex networks with multi-weights based on Razumikhin technique and graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    9. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    10. Wei Yu & Jun Chen & Xingchen Yan, 2019. "Space‒Time Evolution Analysis of the Nanjing Metro Network Based on a Complex Network," Sustainability, MDPI, vol. 11(2), pages 1-17, January.
    11. Bin Yang & Xin Wang & Jian-an Fang & Yuhua Xu, 2019. "The Impact of Coupling Function on Finite-Time Synchronization Dynamics of Multi-Weighted Complex Networks with Switching Topology," Complexity, Hindawi, vol. 2019, pages 1-15, March.
    12. Ren, Yue & Jiang, Haijun & Hu, Cheng & Li, Xinman & Qin, Xuejiao, 2023. "Discontinuous control for exponential synchronization of complex-valued stochastic multi-layer networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming & Jia, Qiang, 2023. "Exponential synchronization for multi-weighted dynamic networks via finite-level quantized control with adaptive scaling gain," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    2. Yan, Jiaye & Zhou, Jiaying & Wu, Zhaoyan, 2019. "Structure identification of unknown complex-variable dynamical networks with complex coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 256-265.
    3. Jian Yang & Zhao Qu & Hui Chang, 2015. "Investigation on Law and Economics Based on Complex Network and Time Series Analysis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    4. He, Tao & Lu, Xiliang & Wu, Xiaoqun & Lu, Jun-an & Zheng, Wei Xing, 2013. "Optimization-based structure identification of dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 1038-1049.
    5. Zheng, Yi & Wu, Xiaoqun & Fan, Ziye & Wang, Wei, 2022. "Identifying topology and system parameters of fractional-order complex dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    6. Jin, Yunguo, 2019. "Parameter recognition for complex networks subjected to noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:412:y:2014:i:c:p:149-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.