IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v393y2014icp76-85.html
   My bibliography  Save this article

Diffusion of relativistic gas mixtures in gravitational fields

Author

Listed:
  • Kremer, Gilberto M.

Abstract

A mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric is studied on the basis of a relativistic Boltzmann equation in the presence of gravitational fields. A BGK-type model equation of the collision operator of the Boltzmann equation is used in order to compute the non-equilibrium distribution functions by the Chapman–Enskog method. The main focus of this work is to obtain Fick’s law without the thermal-diffusion cross-effect. Fick’s law has four contributions, two of them are the usual terms proportional to the gradients of concentration and pressure. The other two are of the same nature as those which appear in Fourier’s law in the presence of gravitational fields and are related to an acceleration and a gravitational potential gradient, but unlike Fourier’s law these last two terms are of non-relativistic order. Furthermore, it is shown that the coefficients of diffusion depend on the gravitational potential and become smaller than those in its absence.

Suggested Citation

  • Kremer, Gilberto M., 2014. "Diffusion of relativistic gas mixtures in gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 76-85.
  • Handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:76-85
    DOI: 10.1016/j.physa.2013.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113008509
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kremer, Gilberto M. & Moratto, Valdemar, 2017. "Transport coefficients for relativistic gas mixtures of hard-sphere particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 44-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:76-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.