IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i19p4619-4628.html
   My bibliography  Save this article

Modular and hierarchical structure of social contact networks

Author

Listed:
  • Ge, Yuanzheng
  • Song, Zhichao
  • Qiu, Xiaogang
  • Song, Hongbin
  • Wang, Yong

Abstract

Social contact networks exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated nature. We propose a mixing pattern of modular and growing hierarchical structures to reconstruct social contact networks by using an individual’s geospatial distribution information in the real world. The hierarchical structure of social contact networks is defined based on the spatial distance between individuals, and edges among individuals are added in turn from the modular layer to the highest layer. It is a gradual process to construct the hierarchical structure: from the basic modular model up to the global network. The proposed model not only shows hierarchically increasing degree distribution and large clustering coefficients in communities, but also exhibits spatial clustering features of individual distributions. As an evaluation of the method, we reconstruct a hierarchical contact network based on the investigation data of a university. Transmission experiments of influenza H1N1 are carried out on the generated social contact networks, and results show that the constructed network is efficient to reproduce the dynamic process of an outbreak and evaluate interventions. The reproduced spread process exhibits that the spatial clustering of infection is accordant with the clustering of network topology. Moreover, the effect of individual topological character on the spread of influenza is analyzed, and the experiment results indicate that the spread is limited by individual daily contact patterns and local clustering topology rather than individual degree.

Suggested Citation

  • Ge, Yuanzheng & Song, Zhichao & Qiu, Xiaogang & Song, Hongbin & Wang, Yong, 2013. "Modular and hierarchical structure of social contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4619-4628.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:19:p:4619-4628
    DOI: 10.1016/j.physa.2013.05.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113004937
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.05.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joshua M. Epstein, 2009. "Modelling to contain pandemics," Nature, Nature, vol. 460(7256), pages 687-687, August.
    2. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Zhichao & Ge, Yuanzheng & Luo, Lei & Duan, Hong & Qiu, Xiaogang, 2015. "An effective immunization strategy for airborne epidemics in modular and hierarchical social contact network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 142-149.
    2. Chen, Lei & Kou, Yingxin & Li, Zhanwu & Xu, An & Wu, Cheng, 2018. "Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 754-773.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G.J. Melman & A.K. Parlikad & E.A.B. Cameron, 2021. "Balancing scarce hospital resources during the COVID-19 pandemic using discrete-event simulation," Health Care Management Science, Springer, vol. 24(2), pages 356-374, June.
    2. Vivek Shastry & D Cale Reeves & Nicholas Willems & Varun Rai, 2022. "Policy and behavioral response to shock events: An agent-based model of the effectiveness and equity of policy design features," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-21, January.
    3. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    4. Elaine O Nsoesie & Richard J Beckman & Madhav V Marathe, 2012. "Sensitivity Analysis of an Individual-Based Model for Simulation of Influenza Epidemics," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-16, October.
    5. Datta, Amitava & Winkelstein, Peter & Sen, Surajit, 2022. "An agent-based model of spread of a pandemic with validation using COVID-19 data from New York State," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    6. Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.
    7. Flaminio Squazzoni & J. Gareth Polhill & Bruce Edmonds & Petra Ahrweiler & Patrycja Antosz & Geeske Scholz & Emile Chappin & Melania Borit & Harko Verhagen & Francesca Giardini & Nigel Gilbert, 2020. "Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-10.
    8. Martin Jaraiz, 2020. "Ants, robots, humans: a self-organizing, complex systems modeling approach," Papers 2009.10823, arXiv.org, revised Oct 2020.
    9. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    10. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    11. Sándor Kovács & Mohammad Fazle Rabbi & Domicián Máté, 2021. "Global Food Security, Economic and Health Risk Assessment of the COVID-19 Epidemic," Mathematics, MDPI, vol. 9(19), pages 1-16, September.
    12. Singh, Anurag & Arquam, Md, 2022. "Epidemiological modeling for COVID-19 spread in India with the effect of testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    13. Wouter Vermeer & Arthur Hjorth & Samuel M. Jenness & C Hendrick Brown & Uri Wilensky, 2020. "Leveraging Modularity During Replication of High-Fidelity Models: Lessons from Replicating an Agent-Based Model for HIV Prevention," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(4), pages 1-7.
    14. Fangfang Liu & Zheng Ma & Ziqing Wang & Shaobo Xie, 2022. "Trade-Off between COVID-19 Pandemic Prevention and Control and Economic Stimulus," IJERPH, MDPI, vol. 19(21), pages 1-22, October.
    15. Wang, Xingyuan & Zhao, Tianfang & Qin, Xiaomeng, 2016. "Model of epidemic control based on quarantine and message delivery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 168-178.
    16. Ghaderi, Mohammad, 2022. "Public health interventions in the face of pandemics: Network structure, social distancing, and heterogeneity," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1016-1031.
    17. Alessandro Basurto & Herbert Dawid & Philipp Harting & Jasper Hepp & Dirk Kohlweyer, 2023. "How to design virus containment policies? A joint analysis of economic and epidemic dynamics under the COVID-19 pandemic," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(2), pages 311-370, April.
    18. Telalagic, S., 2012. "Optimal Treatment of an SIS Disease with Two Strains," Cambridge Working Papers in Economics 1229, Faculty of Economics, University of Cambridge.
    19. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    20. Nadia N Abuelezam & Kathryn Rough & George R Seage III, 2013. "Individual-Based Simulation Models of HIV Transmission: Reporting Quality and Recommendations," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:19:p:4619-4628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.