IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i3p895-904.html
   My bibliography  Save this article

Efficient packet routing strategy in complex networks

Author

Listed:
  • Kawamoto, Hiroki
  • Igarashi, Akito

Abstract

We investigate a new efficient packet routing strategy which mitigates traffic congestion on complex networks. In order to avoid congestion, we minimize the maximum betweenness, which is a measure for concentration of routing paths passing through a node in the network. Danila et al. propose a packet routing strategy in which, instead of shortest paths, they used efficient paths, which are the paths with the minimum total summations of weights assigned to nodes in the respective paths. They use a heuristic algorithm in which the weights are updated step by step by using the information of betweenness of each node in every step and the respective total summations of weights for paths through the nodes with large degrees become comparatively large. Thus passage through such nodes, where congestion almost occurs, is likely to be avoided in their algorithm. The convergence time by their algorithm is, however, quite long. In this paper, we propose a new efficient heuristic algorithm which balances traffic on networks by achieving minimization of the maximum betweenness in the much smaller number of iteration steps for convergence than that by the algorithm of Danila et al.

Suggested Citation

  • Kawamoto, Hiroki & Igarashi, Akito, 2012. "Efficient packet routing strategy in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 895-904.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:3:p:895-904
    DOI: 10.1016/j.physa.2011.08.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111007102
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.08.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Echagüe, Juan & Cholvi, Vicent & Kowalski, Dariusz R., 2018. "Effective use of congestion in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 574-580.
    2. Xi Zhang & Zhili Zhou & Dong Cheng, 2017. "Efficient path routing strategy for flows with multiple priorities on scale-free networks," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    3. Zhang, Junfeng & Ma, Jinlong & Li, Hui-Jia, 2022. "An efficient link closing strategy for improving traffic capacity on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:3:p:895-904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.