IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i24p6594-6600.html
   My bibliography  Save this article

Thermal entangled quantum heat engine

Author

Listed:
  • He, Xian
  • He, Jizhou
  • Zheng, Jie

Abstract

Based on a two-qubit Heisenberg XY model, we construct a four-level entangled quantum heat engine (QHE). It is an interesting quantum Otto cycle where the exchange constant is fixed and only the magnetic field is varied during the adiabatic steps. The expressions for several thermodynamic quantities such as the heat transferred, the work and the efficiency are derived. Moreover, the influence of the entanglement on the thermodynamic quantities is investigated numerically. Several interesting features of the variation of the heat transferred, the work and the efficiency with the concurrences of the thermal entanglement of different thermal equilibrium states are obtained. Finally, we discussed the maximum efficiency of the QHE.

Suggested Citation

  • He, Xian & He, Jizhou & Zheng, Jie, 2012. "Thermal entangled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6594-6600.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6594-6600
    DOI: 10.1016/j.physa.2012.07.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112007194
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.07.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Ahmad-Yazid, A., 2012. "A review on electricity generation based on biomass residue in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5879-5889.
    2. Yin, Yong & Chen, Lingen & Wu, Feng & Ge, Yanlin, 2020. "Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6594-6600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.