IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i12p2240-2250.html
   My bibliography  Save this article

On the predictability of extreme events in records with linear and nonlinear long-range memory: Efficiency and noise robustness

Author

Listed:
  • Bogachev, Mikhail I.
  • Bunde, Armin

Abstract

We study the predictability of extreme events in records with linear and nonlinear long-range memory in the presence of additive white noise using two different approaches: (i) the precursory pattern recognition technique (PRT) that exploits solely the information about short-term precursors, and (ii) the return interval approach (RIA) that exploits long-range memory incorporated in the elapsed time after the last extreme event. We find that the PRT always performs better when only linear memory is present. In the presence of nonlinear memory, both methods demonstrate comparable efficiency in the absence of white noise. When additional white noise is present in the record (which is the case in most observational records), the efficiency of the PRT decreases monotonously with increasing noise level. In contrast, the RIA shows an abrupt transition between a phase of low level noise where the prediction is as good as in the absence of noise, and a phase of high level noise where the prediction becomes poor. In the phase of low and intermediate noise the RIA predicts considerably better than the PRT, which explains our recent findings in physiological and financial records.

Suggested Citation

  • Bogachev, Mikhail I. & Bunde, Armin, 2011. "On the predictability of extreme events in records with linear and nonlinear long-range memory: Efficiency and noise robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2240-2250.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:12:p:2240-2250
    DOI: 10.1016/j.physa.2011.02.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111001506
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.02.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markelov, Oleg & Nguyen Duc, Viet & Bogachev, Mikhail, 2017. "Statistical modeling of the Internet traffic dynamics: To which extent do we need long-term correlations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 48-60.
    2. Li, Wei-Zhen & Zhai, Jin-Rui & Jiang, Zhi-Qiang & Wang, Gang-Jin & Zhou, Wei-Xing, 2022. "Predicting tail events in a RIA-EVT-Copula framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    3. Zhi-Qiang Jiang & Askery Canabarro & Boris Podobnik & H. Eugene Stanley & Wei-Xing Zhou, 2016. "Early warning of large volatilities based on recurrence interval analysis in Chinese stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1713-1724, November.
    4. Paradisi, Paolo & Allegrini, Paolo, 2015. "Scaling law of diffusivity generated by a noisy telegraph signal with fractal intermittency," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 451-462.
    5. Santos, Moises S. & Szezech, José D. & Batista, Antonio M. & Iarosz, Kelly C. & Caldas, Iberê L. & Viana, Ricardo L., 2019. "Dragon-kings death in nonlinear wave interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    6. Gulich, Damián & Zunino, Luciano, 2012. "The effects of observational correlated noises on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4100-4110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:12:p:2240-2250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.