IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i7p1329-1345.html
   My bibliography  Save this article

Solutions to a reduced Poisson–Nernst–Planck system and determination of reaction rates

Author

Listed:
  • Li, Bo
  • Lu, Benzhuo
  • Wang, Zhongming
  • McCammon, J. Andrew

Abstract

We study a reduced Poisson–Nernst–Planck (PNP) system for a charged spherical solute immersed in a solvent with multiple ionic or molecular species that are electrostatically neutralized in the far field. Some of these species are assumed to be in equilibrium. The concentrations of such species are described by the Boltzmann distributions that are further linearized. Others are assumed to be reactive, meaning that their concentrations vanish when in contact with the charged solute. We present both semi-analytical solutions and numerical iterative solutions to the underlying reduced PNP system, and calculate the reaction rate for the reactive species. We give a rigorous analysis on the convergence of our simple iteration algorithm. Our numerical results show the strong dependence of the reaction rates of the reactive species on the magnitude of its far field concentration as well as on the ionic strength of all the chemical species. We also find non-monotonicity of electrostatic potential in certain parameter regimes. The results for the reactive system and those for the non-reactive system are compared to show the significant differences between the two cases. Our approach provides a means of solving a PNP system which in general does not have a closed-form solution even with a special geometrical symmetry. Our findings can also be used to test other numerical methods in large-scale computational modeling of electro-diffusion in biological systems.

Suggested Citation

  • Li, Bo & Lu, Benzhuo & Wang, Zhongming & McCammon, J. Andrew, 2010. "Solutions to a reduced Poisson–Nernst–Planck system and determination of reaction rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1329-1345.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:7:p:1329-1345
    DOI: 10.1016/j.physa.2009.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109010206
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Itkin, 2015. "Nonlinear PDEs risen when solving some optimization problems in finance, and their solutions," Papers 1510.04899, arXiv.org.
    2. Peter Carr & Andrey Itkin & Sasha Stoikov, 2019. "A model-free backward and forward nonlinear PDEs for implied volatility," Papers 1907.07305, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:7:p:1329-1345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.