IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v377y2007i2p381-400.html
   My bibliography  Save this article

Numerical study for the electrified instability of viscoelastic cylindrical dielectric fluid film surrounded by a conducting gas

Author

Listed:
  • El-Sayed, M.F.
  • Syam, M.I.

Abstract

The linear electrohydrodynamic cylindrical instability of annular Walters B′ viscoelastic dielectric fluid layer surrounded by a conducting gas in the presence of radial electric field is investigated. The obtained dispersion relation is found to be complicated and cannot be treated theoretically easily. Two limiting cases of interest are investigated, when the inertia is dominant, and when both the kinematic viscosity and viscoelasticity are high, and the corresponding new stability conditions are obtained for both cases. We solve the eigenvalue problem numerically using the continuation method which gives better results than the classical non-linear solvers such as Newton and Secant methods. It is found that the applied radial electric field has a dual role on the stability of the considered system, depending of the chosen wavenumbers range. Both the kinematic viscoelasticity and liquid depth are found to have stabilizing effects, while both the kinematic viscosity and surface tension have destabilizing effects on the considered system. The stability or instability breaks down for critical wavenumber values at which the growth rate vanishes. The behaviors of both the maximum growth rate and the corresponding dominant wavenumber are discussed in detail corresponding to the effect of all physical parameters. Finally a comparison between the results obtained here for Walters B′ viscoelastic fluids, and those obtained here too if the fluid is replaced by a Rivlin–Ericksen viscoelastic one is achieved. The limiting cases of absence of electric field and/or kinematic viscoelasticity are also investigated in detail.

Suggested Citation

  • El-Sayed, M.F. & Syam, M.I., 2007. "Numerical study for the electrified instability of viscoelastic cylindrical dielectric fluid film surrounded by a conducting gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 381-400.
  • Handle: RePEc:eee:phsmap:v:377:y:2007:i:2:p:381-400
    DOI: 10.1016/j.physa.2006.11.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106012787
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.11.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bothayna S. H. Kashkari & Muhammed I. Syam, 2018. "Reproducing Kernel Method for Solving Nonlinear Fractional Fredholm Integrodifferential Equation," Complexity, Hindawi, vol. 2018, pages 1-7, December.
    2. Muhammed I. Syam & Azza Alsuwaidi & Asia Alneyadi & Safa Al Refai & Sondos Al Khaldi, 2018. "An Implicit Hybrid Method for Solving Fractional Bagley-Torvik Boundary Value Problem," Mathematics, MDPI, vol. 6(7), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:377:y:2007:i:2:p:381-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.