IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v331y2004i3p579-601.html
   My bibliography  Save this article

Stretching and relaxation dynamics in double stranded DNA

Author

Listed:
  • Hennig, D.
  • Archilla, J.F.R.

Abstract

We study numerically the mechanical stability and elasticity properties of duplex DNA molecules within the frame of a network model incorporating microscopic degrees of freedom related with the arrangement of the base pairs. We pay special attention to the opening–closing dynamics of double-stranded DNA molecules which are forced into non-equilibrium conformations. Mechanical stress imposed at one terminal end of the DNA molecule brings it into a partially opened configuration. We examine the subsequent relaxation dynamics connected with energy exchange processes between the various degrees of freedom and structural rearrangements leading to complete recombination to the double-stranded conformation. The similarities and differences between the relaxation dynamics for a planar ladder-like DNA molecule and a twisted one are discussed in detail. In this way we show that the attainment of a quasi-equilibrium regime proceeds faster in the case of the twisted DNA form than for its thus less flexible ladder counterpart. Furthermore we find that the velocity of the complete recombination of the DNA molecule is lower than the velocity imposed by the forcing unit which is in compliance with the experimental observations for the opening–closing cycle of DNA molecules.

Suggested Citation

  • Hennig, D. & Archilla, J.F.R., 2004. "Stretching and relaxation dynamics in double stranded DNA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(3), pages 579-601.
  • Handle: RePEc:eee:phsmap:v:331:y:2004:i:3:p:579-601
    DOI: 10.1016/j.physa.2003.09.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103008963
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.09.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:331:y:2004:i:3:p:579-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.