IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v331y2004i3p517-530.html
   My bibliography  Save this article

Adsorption thermodynamics of interacting particles on diffusion-limited aggregates

Author

Listed:
  • Nazzarro, M.
  • Nieto, F.
  • Ramirez-Pastor, A.J.

Abstract

Grand canonical Monte Carlo simulations have been performed in order to study adsorption thermodynamics of pairwise interacting particles on fractal surfaces. Diffusion-limited aggregates (DLA) have been used as a substrate where interacting particles are adsorbed. In order to obtain aggregates with different morphologies, DLA clusters are generated on different strongly correlated surfaces. Adsorption isotherm, adsorption energy and differential heat of adsorption were calculated for attractive and repulsive nearest-neighbor (NN) lateral interactions. For the case of repulsive couplings and low temperatures, four novel ordered phases has been found in the adsorbate, each one corresponding to the formation of a chessboard-like structure on sites with one, two, three and four NN sites, respectively. The values of coverage at which these ordered phases emerge are not symmetrical around θ=0.5. This is a consequence of the non-equivalence between vacancy and particle in the case of adsorption on fractal structures. The influence of ordered structures on thermodynamic quantities associated to the adsorbed monolayer has been analyzed and discussed in the context of the Lattice-Gas model.

Suggested Citation

  • Nazzarro, M. & Nieto, F. & Ramirez-Pastor, A.J., 2004. "Adsorption thermodynamics of interacting particles on diffusion-limited aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(3), pages 517-530.
  • Handle: RePEc:eee:phsmap:v:331:y:2004:i:3:p:517-530
    DOI: 10.1016/j.physa.2003.09.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103008720
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.09.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:331:y:2004:i:3:p:517-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.