IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v323y2003icp519-533.html
   My bibliography  Save this article

Breather solutions of a nonlinear DNA model including a longitudinal degree of freedom

Author

Listed:
  • Agarwal, J.
  • Hennig, D.

Abstract

We present a model of the DNA double helix assigning three degrees of freedom to each pair of nucleotides. The model is an extension of the Barbi–Cocco–Peyrard (BCP) model in the sense that the current model allows for longitudinal motions of the nucleotides parallel to the helix axis. The molecular structure of the double helix is modelled by a system of coupled oscillators. The nucleotides are represented by point masses and coupled via point–point interaction potentials. The latter describe the covalent and hydrogen bonds responsible for the secondary structure of DNA. We obtain breather solutions using an established method for the construction of breathers on nonlinear lattices starting from the anti-coupling limit. In order to apply this method we analyse the phonon spectrum of the linearised system corresponding to our model. The obtained breathing motion consists of a local opening and re-closing of base pairs combined with a local untwist of the helix. The motions in longitudinal direction are of much lower amplitudes than the radial and angular elongations.

Suggested Citation

  • Agarwal, J. & Hennig, D., 2003. "Breather solutions of a nonlinear DNA model including a longitudinal degree of freedom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 519-533.
  • Handle: RePEc:eee:phsmap:v:323:y:2003:i:c:p:519-533
    DOI: 10.1016/S0378-4371(02)02028-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102020289
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)02028-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikitiuk, Aleksandr S. & Bayandin, Yuriy V. & Naimark, Oleg B., 2022. "Statistical thermodynamics of DNA with open states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:323:y:2003:i:c:p:519-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.