IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v306y2002icp39-50.html
   My bibliography  Save this article

Denaturation and unzipping of DNA: statistical mechanics of interacting loops

Author

Listed:
  • Kafri, Y.
  • Mukamel, D.
  • Peliti, L.

Abstract

When DNA molecules are heated they undergo a denaturation transition by which the two strands of the molecule are separated and become unbound. Experimental studies strongly indicate that the denaturation transition is first order. The main theoretical approach to study this transition, introduced in the early 1960s, considers microscopic configurations of a DNA molecule as given by an alternating sequence of non-interacting bound segments and denaturated loops. Studies of this model usually neglect the repulsive, self-avoiding, interaction between different loops and segments and have invariably yielded continuous denaturation transitions. It is shown that the excluded volume interaction between denaturated loops and bound segments may be taken into account using recent results on the scaling properties of polymer networks of arbitrary topology. These interactions are found to drive the transition first order, compatible with experimental observations. The unzipping transition of DNA which takes place when the two strands are pulled apart by an external force acting on one end may also be considered within this approach, again yielding a first-order transition. Although the denaturation and unzipping transitions are thermodynamically first order, they do exhibit critical fluctuations in some of their properties. This appears, for example, in the algebraic decay of the loop size distribution at the thermal denaturation and in the divergence of the length of the end segment as the transition is approached in both thermal- and force-induced transitions.

Suggested Citation

  • Kafri, Y. & Mukamel, D. & Peliti, L., 2002. "Denaturation and unzipping of DNA: statistical mechanics of interacting loops," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 306(C), pages 39-50.
  • Handle: RePEc:eee:phsmap:v:306:y:2002:i:c:p:39-50
    DOI: 10.1016/S0378-4371(02)00483-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102004831
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)00483-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shekaari, Ashkan & Jafari, Mahmoud, 2019. "Statistical mechanical modeling of a DNA nanobiostructure at the base-pair level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 80-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:306:y:2002:i:c:p:39-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.