IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v79y2009i12p3500-3510.html
   My bibliography  Save this article

Pollution source identification using a coupled diffusion model with a genetic algorithm

Author

Listed:
  • Khlaifi, Anis
  • Ionescu, Anda
  • Candau, Yves

Abstract

A new approach for the source quantification has been developed on the basis of real air pollutant hourly concentrations of SO2, measured by three monitoring stations, during 9h, around a group of three industrial sources. This inverse problem has been solved by coupling a direct model of diffusion (Pasquill’s Gaussian model) with a genetic algorithm, to search solutions leading to a minimum error between model outputs and measurements. The inversion performance depends on the relationship between the wind field and the configuration sources–receptors: good results are obtained when the monitoring stations are downwind from the sources, and in these cases, the order of magnitude of emissions is retrieved, sometimes with less than 10% error for at least two sources; there are some configurations (wind direction versus source and receptor locations) which do not permit to restore emissions. The latter situations reveal the need to conceive a specific network of sensors, taking into account the source locations and the most frequent weather patterns.

Suggested Citation

  • Khlaifi, Anis & Ionescu, Anda & Candau, Yves, 2009. "Pollution source identification using a coupled diffusion model with a genetic algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(12), pages 3500-3510.
  • Handle: RePEc:eee:matcom:v:79:y:2009:i:12:p:3500-3510
    DOI: 10.1016/j.matcom.2009.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475409001219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2009.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Rui & Liu, Yan-Kui, 2010. "Modeling data envelopment analysis by chance method in hybrid uncertain environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(5), pages 922-950.
    2. Maciel, Leandro & Gomide, Fernando & Ballini, Rosangela, 2016. "A differential evolution algorithm for yield curve estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 129(C), pages 10-30.
    3. Yu Li & Jinggang Chu & Guozhen Wei & Sifan Jin & Tiantian Yang & Bo Li, 2021. "Robust Placement of Water Quality Sensor for Long-Distance Water Transfer Projects Based on Multi-Objective Optimization and Uncertainty Analysis," Sustainability, MDPI, vol. 13(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2009:i:12:p:3500-3510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.