IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v78y2008i4p532-547.html
   My bibliography  Save this article

Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method

Author

Listed:
  • Ismail, M.S.

Abstract

The coupled nonlinear Schrödinger equation models several interesting physical phenomena presents a model equation for optical fiber with linear birefringence. In this paper we derive a finite element scheme to solve this equation, we test this method for stability and accuracy, many numerical tests have been conducted. The scheme is quite accurate and describe the interaction picture clearly.

Suggested Citation

  • Ismail, M.S., 2008. "Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 532-547.
  • Handle: RePEc:eee:matcom:v:78:y:2008:i:4:p:532-547
    DOI: 10.1016/j.matcom.2007.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475407002145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2007.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muslu, G.M. & Erbay, H.A., 2005. "Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 67(6), pages 581-595.
    2. Ismail, M.S. & Taha, Thiab R., 2007. "A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(4), pages 302-311.
    3. Ismail, M.S. & Taha, Thiab R., 2001. "Numerical simulation of coupled nonlinear Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 56(6), pages 547-562.
    4. Sonnier, W.J. & Christov, C.I., 2005. "Strong coupling of Schrödinger equations: Conservative scheme approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(5), pages 514-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Shenggao & Cheng, Xiaoliang, 2010. "Numerical solution to coupled nonlinear Schrödinger equations on unbounded domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2362-2373.
    2. Ilati, Mohammad & Dehghan, Mehdi, 2019. "DMLPG method for numerical simulation of soliton collisions in multi-dimensional coupled damped nonlinear Schrödinger system which arises from Bose–Einstein condensates," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 244-253.
    3. Lin, Bin, 2019. "Parametric spline schemes for the coupled nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 58-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tingchun & Nie, Tao & Zhang, Luming & Chen, Fangqi, 2008. "Numerical simulation of a nonlinearly coupled Schrödinger system: A linearly uncoupled finite difference scheme," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 607-621.
    2. Taghread Ghannam Alharbi & Abdulghani Alharbi, 2023. "A Study of Traveling Wave Structures and Numerical Investigations into the Coupled Nonlinear Schrödinger Equation Using Advanced Mathematical Techniques," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    3. Ilati, Mohammad & Dehghan, Mehdi, 2019. "DMLPG method for numerical simulation of soliton collisions in multi-dimensional coupled damped nonlinear Schrödinger system which arises from Bose–Einstein condensates," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 244-253.
    4. Lin, Bin, 2019. "Parametric spline schemes for the coupled nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 58-69.
    5. Todorov, M.D. & Christov, C.I., 2009. "Impact of the large cross-modulation parameter on the collision dynamics of quasi-particles governed by vector NLSE," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(1), pages 46-55.
    6. Tsang, S.C. & Chow, K.W., 2004. "The evolution of periodic waves of the coupled nonlinear Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 66(6), pages 551-564.
    7. Hederi, M. & Islas, A.L. & Reger, K. & Schober, C.M., 2016. "Efficiency of exponential time differencing schemes for nonlinear Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 127(C), pages 101-113.
    8. Todorov, M.D., 2016. "The effect of the elliptic polarization on the quasi-particle dynamics of linearly coupled systems of Nonlinear Schrödinger Equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 127(C), pages 273-286.
    9. Sonnier, W.J. & Christov, C.I., 2005. "Strong coupling of Schrödinger equations: Conservative scheme approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(5), pages 514-525.
    10. Todorov, M.D. & Christov, C.I., 2012. "Collision dynamics of elliptically polarized solitons in Coupled Nonlinear Schrödinger Equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(7), pages 1321-1332.
    11. Ismail, M.S. & Taha, Thiab R., 2007. "A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(4), pages 302-311.
    12. Vyacheslav Trofimov & Maria Loginova & Mikhail Fedotov & Daniil Tikhvinskii & Yongqiang Yang & Boyuan Zheng, 2022. "Conservative Finite-Difference Scheme for 1D Ginzburg–Landau Equation," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
    13. Zhou, Shenggao & Cheng, Xiaoliang, 2010. "Numerical solution to coupled nonlinear Schrödinger equations on unbounded domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2362-2373.
    14. Borluk, H. & Muslu, G.M. & Erbay, H.A., 2007. "A numerical study of the long wave–short wave interaction equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(2), pages 113-125.
    15. Straughan, B., 2009. "Nonlinear acceleration waves in porous media," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(4), pages 763-769.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:78:y:2008:i:4:p:532-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.