IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v203y2023icp449-485.html
   My bibliography  Save this article

A stochastic predator–prey system with modified LG-Holling type II functional response

Author

Listed:
  • Chen, Xingzhi
  • Tian, Baodan
  • Xu, Xin
  • Zhang, Hailan
  • Li, Dong

Abstract

In this paper, a stochastic two-predator one-prey system with modified Leslie–Gower and Holling-type II functional response is proposed, which is randomly disturbed by the well-known mean-reverting Ornstein–Uhlenbeck process. By Itoˆ’s integral formula, stochastic comparison theorem, the strong law of large number theorem for martingales, and modeling and analysis methods in stochastic differential equations, the existence and uniqueness of the global positive solution for the system are discussed. Then, the additional conditions for the persistence in the mean and extinction of the system are obtained, respectively. Besides, the effects of the speed of reversion and the intensity of volatility in the Ornstein–Uhlenbeck process on the dynamics of the system are investigated. Furthermore, the ergodic stationary distribution of the system under a low-level intensity of stochastic noise is also derived, which indicates that x, y1 and y2 will be persist and fluctuate around the positive values. Finally, a series of numerical examples are provided to verify the correctness of the theoretical analysis.

Suggested Citation

  • Chen, Xingzhi & Tian, Baodan & Xu, Xin & Zhang, Hailan & Li, Dong, 2023. "A stochastic predator–prey system with modified LG-Holling type II functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 449-485.
  • Handle: RePEc:eee:matcom:v:203:y:2023:i:c:p:449-485
    DOI: 10.1016/j.matcom.2022.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422002865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Swarnali & Samanta, G.P., 2015. "A Leslie–Gower predator–prey model with disease in prey incorporating a prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 69-84.
    2. Meng, Xinzhu & Li, Fei & Gao, Shujing, 2018. "Global analysis and numerical simulations of a novel stochastic eco-epidemiological model with time delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 701-726.
    3. Lu, Chun, 2021. "Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 316-332.
    4. Amirabad, H. Qolizadeh & RabieiMotlagh, O. & MohammadiNejad, H.M., 2019. "Permanency in predator–prey models of Leslie type with ratio-dependent simplified Holling type-IV functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 157(C), pages 63-76.
    5. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    6. Zhang, Xiaofeng & Yuan, Rong, 2021. "A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    7. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Wang, Weiming & Cai, Yongli & Ding, Zuqin & Gui, Zhanji, 2018. "A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 921-936.
    9. Li, Shangzhi & Guo, Shangjiang, 2021. "Permanence of a stochastic prey–predator model with a general functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 308-336.
    10. Xu, Dongsheng & Liu, Ming & Xu, Xiaofeng, 2020. "Analysis of a stochastic predator–prey system with modified Leslie–Gower and Holling-type IV schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qun & Jiang, Daqing, 2023. "Analysis of a stochastic inshore–offshore hairtail fishery model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    3. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    4. Yuke Zhang & Xinzhu Meng, 2022. "Dynamics Analysis of a Predator–Prey Model with Hunting Cooperative and Nonlinear Stochastic Disturbance," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    5. Liu, Chao & Xun, Xinying & Zhang, Guilai & Li, Yuanke, 2020. "Stochastic dynamics and optimal control in a hybrid bioeconomic system with telephone noise and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.
    9. Cao, Nan & Fu, Xianlong, 2023. "Stationary distribution and extinction of a Lotka–Volterra model with distribute delay and nonlinear stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Eva Kaslik & Mihaela Neamţu & Loredana Flavia Vesa, 2021. "Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    11. Liu, Junli & Liu, Bairu & Lv, Pan & Zhang, Tailei, 2021. "An eco-epidemiological model with fear effect and hunting cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a regime-switching predator–prey model with anti-predator behaviour and higher-order perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 199-210.
    13. Dongmei Yuan & Yuzhen Bai, 2019. "Stability of Traveling Wave Fronts for a Three Species Predator-Prey Model with Nonlocal Dispersals," Complexity, Hindawi, vol. 2019, pages 1-15, December.
    14. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    15. Zhang, Baoxiang & Cai, Yongli & Wang, Bingxian & Wang, Weiming, 2019. "Pattern formation in a reaction–diffusion parasite–host model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 732-740.
    16. Ruiqing Shi & Ting Lu & Cuihong Wang, 2019. "Dynamic Analysis of a Fractional-Order Model for Hepatitis B Virus with Holling II Functional Response," Complexity, Hindawi, vol. 2019, pages 1-13, August.
    17. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    18. Kim, Sangkwon & Park, Jintae & Lee, Chaeyoung & Jeong, Darae & Choi, Yongho & Kwak, Soobin & Kim, Junseok, 2020. "Periodic travelling wave solutions for a reaction-diffusion system on landscape fitted domains," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    19. Lan, Guijie & Wei, Chunjin & Zhang, Shuwen, 2019. "Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 828-842.
    20. Pimentel, Carlos Eduardo Hirth & Rodriguez, Pablo M. & Valencia, Leon A., 2020. "A note on a stage-specific predator–prey stochastic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:203:y:2023:i:c:p:449-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.