IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v180y2021icp401-419.html
   My bibliography  Save this article

Generalized Adams method for solving fractional delay differential equations

Author

Listed:
  • Zhao, Jingjun
  • Jiang, Xingzhou
  • Xu, Yang

Abstract

Based on fractional generalized Adams methods, a numerical method is constructed for solving fractional delay differential equations. The convergence of the method is analyzed in detail. The stability of the fractional generalized Adams methods for fractional ordinary differential equations is generalized to a general framework. Under such framework, the linear stability of the method is studied for fractional delay differential equations. Numerical experiments confirm the convergence and the stability of the method.

Suggested Citation

  • Zhao, Jingjun & Jiang, Xingzhou & Xu, Yang, 2021. "Generalized Adams method for solving fractional delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 401-419.
  • Handle: RePEc:eee:matcom:v:180:y:2021:i:c:p:401-419
    DOI: 10.1016/j.matcom.2020.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhen Wang, 2013. "A Numerical Method for Delayed Fractional-Order Differential Equations," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-7, May.
    2. Yan, Ye & Kou, Chunhai, 2012. "Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1572-1585.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doungmo Goufo, Emile Franc, 2019. "On chaotic models with hidden attractors in fractional calculus above power law," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 24-30.
    2. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    3. Wang, Jing & Hu, Xiaohui & Wei, Yunliang & Wang, Zhen, 2019. "Sampled-data synchronization of semi-Markov jump complex dynamical networks subject to generalized dissipativity property," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 853-864.
    4. Hao, Zhaopeng & Fan, Kai & Cao, Wanrong & Sun, Zhizhong, 2016. "A finite difference scheme for semilinear space-fractional diffusion equations with time delay," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 238-254.
    5. DAŞBAŞI, Bahatdin, 2020. "Stability analysis of the hiv model through incommensurate fractional-order nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    6. Li, Dongfang & Zhang, Chengjian, 2020. "Long time numerical behaviors of fractional pantograph equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 244-257.
    7. Uddin, Md. Jasim & Rana, Sarker Md. Sohel & Işık, Seval & Kangalgil, Figen, 2023. "On the qualitative study of a discrete fractional order prey–predator model with the effects of harvesting on predator population," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Yingkang Xie & Zhen Wang & Bo Meng, 2019. "Stability and Bifurcation of a Delayed Time-Fractional Order Business Cycle Model with a General Liquidity Preference Function and Investment Function," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    9. Huang, Zhengguo & Xia, Jianwei & Wang, Jing & Wei, Yunliang & Wang, Zhen & Wang, Jian, 2019. "Mixed H∞/l2−l∞ state estimation for switched genetic regulatory networks subject to packet dropouts: A persistent dwell-time switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 198-212.
    10. Fernando Alcántara-López & Carlos Fuentes & Carlos Chávez & Jesús López-Estrada & Fernando Brambila-Paz, 2022. "Fractional Growth Model with Delay for Recurrent Outbreaks Applied to COVID-19 Data," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    11. Yao, Zichen & Yang, Zhanwen & Gao, Jianfang, 2023. "Unconditional stability analysis of Grünwald Letnikov method for fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    12. Mihailović, D.T. & Kostić, V. & Balaž, I. & Cvetković, Lj., 2014. "Complexity and asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 30-43.
    13. Lazebnik, Teddy, 2023. "Computational applications of extended SIR models: A review focused on airborne pandemics," Ecological Modelling, Elsevier, vol. 483(C).
    14. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    15. Chen, Zhong & Gou, QianQian, 2019. "Piecewise Picard iteration method for solving nonlinear fractional differential equation with proportional delays," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 465-478.
    16. Javidi, Mohammad & Ahmad, Bashir, 2015. "Dynamic analysis of time fractional order phytoplankton–toxic phytoplankton–zooplankton system," Ecological Modelling, Elsevier, vol. 318(C), pages 8-18.
    17. Chéagé Chamgoué, A. & Ngueuteu, G.S.M. & Yamapi, R. & Woafo, P., 2018. "Memory effect in a self-sustained birhythmic biological system," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 160-169.
    18. Fu, Peng & Wang, Can-Jun & Yang, Ke-Li & Li, Xu-Bo & Yu, Biao, 2022. "Reentrance-like vibrational resonance in a fractional-order birhythmic biological system," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. Carla M. A. Pinto & Ana R. M. Carvalho & Dumitru Baleanu & Hari M. Srivastava, 2019. "Efficacy of the Post-Exposure Prophylaxis and of the HIV Latent Reservoir in HIV Infection," Mathematics, MDPI, vol. 7(6), pages 1-16, June.
    20. Huo, Jingjing & Zhao, Hongyong, 2016. "Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 41-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:180:y:2021:i:c:p:401-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.