IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v89y2019ics0264837719300407.html
   My bibliography  Save this article

Impact of land use and land cover changes on temperature trends over India

Author

Listed:
  • Nayak, Sridhara
  • Mandal, Manabottam

Abstract

This study estimates the temperature trends over India and seeks to understand the contribution of land use and land cover (LULC) changes towards the change in the temperature trends (warming or cooling) during 1981–2006 by using ‘Observation minus Reanalysis’ (OMR) method. We find that the India got warmer by 0.1 °C per decade during 1981–2006 and the LULC changes contributed to cooling over India by 0.02 °C per decade during this period. The contribution of land use changes to the temperature trends depends on the type of LULC and their conversion from one type to another. With the exception of dense forest, all land cover conversions to agriculture lead to cooling whereas conversion from dense forest to agriculture results in warming. The contribution of LULC changes towards cooling over India during 1981–2006 is due to the reduction of area under shrubs/ small vegetation and subsequent increase of the area under agricultural/ fallow land. The analysis shows that even though the LULC changes contributed towards overall cooling during 1981–2006 over India, it contributed towards warming during 1991–2006. We find that the cooling caused by LULC changes during 1981–2006 is due to the cooling contributed during 1981–1990. Our overall results have implications for future land use change strategies that can be undertaken over India in order to avoid further worsening the Indian climate.

Suggested Citation

  • Nayak, Sridhara & Mandal, Manabottam, 2019. "Impact of land use and land cover changes on temperature trends over India," Land Use Policy, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:lauspo:v:89:y:2019:i:c:s0264837719300407
    DOI: 10.1016/j.landusepol.2019.104238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837719300407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2019.104238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. Liu, Yansui, 2018. "Introduction to land use and rural sustainability in China," Land Use Policy, Elsevier, vol. 74(C), pages 1-4.
    3. Roger A. Pielke & Andy Pitman & Dev Niyogi & Rezaul Mahmood & Clive McAlpine & Faisal Hossain & Kees Klein Goldewijk & Udaysankar Nair & Richard Betts & Souleymane Fall & Markus Reichstein & Pavel Kab, 2011. "Land use/land cover changes and climate: modeling analysis and observational evidence," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(6), pages 828-850, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khun La Yaung & Amnat Chidthaisong & Atsamon Limsakul & Pariwate Varnakovida & Can Trong Nguyen, 2021. "Land Use Land Cover Changes and Their Effects on Surface Air Temperature in Myanmar and Thailand," Sustainability, MDPI, vol. 13(19), pages 1-21, October.
    2. Netrananda Sahu & Atul Saini & Swadhin Behera & Takahiro Sayama & Sridhara Nayak & Limonlisa Sahu & Weili Duan & Ram Avtar & Masafumi Yamada & R. B. Singh & Kaoru Takara, 2020. "Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    3. Guste Metrikaityte & Jurate Suziedelyte Visockiene & Kestutis Papsys, 2022. "Digital Mapping of Land Cover Changes Using the Fusion of SAR and MSI Satellite Data," Land, MDPI, vol. 11(7), pages 1-20, July.
    4. Jinxiu Liu & Weihao Shen & Yaqian He, 2021. "Effects of Cropland Expansion on Temperature Extremes in Western India from 1982 to 2015," Land, MDPI, vol. 10(5), pages 1-17, May.
    5. Rubeena Vohra & K. C. Tiwari, 2023. "Analysis of land use and land cover changes and their impact on temperature using landsat satellite imageries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8623-8650, August.
    6. Sridhara Nayak & Suman Maity & Kuvar S. Singh & Hara Prasad Nayak & Soma Dutta, 2021. "Influence of the Changes in Land-Use and Land Cover on Temperature over Northern and North-Eastern India," Land, MDPI, vol. 10(1), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    2. Pengke Shen & Shuqing Zhao, 2021. "1/4 to 1/3 of observed warming trends in China from 1980 to 2015 are attributed to land use changes," Climatic Change, Springer, vol. 164(3), pages 1-19, February.
    3. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    4. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    5. Jianglin Lu & Keqiang Wang & Hongmei Liu, 2022. "Residents’ Selection Behavior of Compensation Schemes for Construction Land Reduction: Empirical Evidence from Questionnaires in Shanghai, China," Land, MDPI, vol. 12(1), pages 1-29, December.
    6. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    7. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    8. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    9. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    10. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    11. Wang, Bo & Li, Fan & Feng, Shuyi & Shen, Tong, 2020. "Transfer of development rights, farmland preservation, and economic growth: a case study of Chongqing’s land quotas trading program," Land Use Policy, Elsevier, vol. 95(C).
    12. Chi, Yuan & Liu, Dahai & Wang, Jing & Wang, Enkang, 2020. "Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China," Land Use Policy, Elsevier, vol. 99(C).
    13. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    14. Xu, Tingting & Gao, Jay & Li, Yuhua, 2019. "Machine learning-assisted evaluation of land use policies and plans in a rapidly urbanizing district in Chongqing, China," Land Use Policy, Elsevier, vol. 87(C).
    15. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    16. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    17. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    18. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    19. Antonín Vaishar & Milada Šťastná, 2019. "Sustainable Development of a Peripheral Mountain Region on the State Border: Case Study of Moravské Kopanice Microregion (Moravia)," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    20. Pai Wang & Mengna Qi & Yajia Liang & Xuebing Ling & Yan Song, 2019. "Examining the Relationship between Environmentally Friendly Land Use and Rural Revitalization Using a Coupling Analysis: A Case Study of Hainan Province, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:89:y:2019:i:c:s0264837719300407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.