IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i5p815-833.html
   My bibliography  Save this article

The one- and multi-sample problem for functional data with application to projective shape analysis

Author

Listed:
  • Munk, A.
  • Paige, R.
  • Pang, J.
  • Patrangenaru, V.
  • Ruymgaart, F.

Abstract

In this paper tests are derived for testing neighborhood hypotheses for the one- and multi-sample problem for functional data. Our methodology is used to generalize testing in projective shape analysis, which has traditionally involving data consisting of finite number of points, to the functional case. The one-sample test is applied to the problem of scene identification, in the context of the projective shape of a planar curve.

Suggested Citation

  • Munk, A. & Paige, R. & Pang, J. & Patrangenaru, V. & Ruymgaart, F., 2008. "The one- and multi-sample problem for functional data with application to projective shape analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 815-833, May.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:5:p:815-833
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00060-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    2. Holger Dette & Axel Munk, 2003. "Some Methodological Aspects of Validation of Models in Nonparametric Regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(2), pages 207-244, May.
    3. Ruymgaart, Frits H. & Yang, Song, 1997. "Some Applications of Watson's Perturbation Approach to Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 48-60, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    2. Ellingson, Leif & Patrangenaru, Vic & Ruymgaart, Frits, 2013. "Nonparametric estimation of means on Hilbert manifolds and extrinsic analysis of mean shapes of contours," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 317-333.
    3. Vic Patrangenaru & Mingfei Qiu & Marius Buibas, 2014. "Two Sample Tests for Mean 3D Projective Shapes from Digital Camera Images," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 485-506, June.
    4. Amanda Plunkett & Junyong Park, 2019. "Two-sample test for sparse high-dimensional multinomial distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 804-826, September.
    5. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    6. Patrangenaru, V. & Liu, X. & Sugathadasa, S., 2010. "A nonparametric approach to 3D shape analysis from digital camera images -- I," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 11-31, January.
    7. Victor Patrangenaru & Robert Paige & K. David Yao & Mingfei Qiu & David Lester, 2016. "Projective shape analysis of contours and finite 3D configurations from digital camera images," Statistical Papers, Springer, vol. 57(4), pages 1017-1040, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cupidon, J. & Eubank, R. & Gilliam, D. & Ruymgaart, F., 2008. "Some properties of canonical correlations and variates in infinite dimensions," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1083-1104, July.
    2. Mas, André, 2002. "Weak convergence for the covariance operators of a Hilbertian linear process," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 117-135, May.
    3. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Mingotti, Nicola & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2015. "A Random Walk Test for Functional Time Series," DES - Working Papers. Statistics and Econometrics. WS ws1506, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.
    6. Jarry, Gabriel & Delahaye, Daniel & Nicol, Florence & Feron, Eric, 2020. "Aircraft atypical approach detection using functional principal component analysis," Journal of Air Transport Management, Elsevier, vol. 84(C).
    7. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    8. Michal Benko & Wolfgang Härdle & Alois Kneip, 2006. "Common Functional Principal Components," SFB 649 Discussion Papers SFB649DP2006-010, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    9. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    10. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    11. Qi, Xin & Zhao, Hongyu, 2011. "Some theoretical properties of Silverman's method for Smoothed functional principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 741-767, April.
    12. Ci-Ren Jiang & John A. D. Aston & Jane-Ling Wang, 2016. "A Functional Approach to Deconvolve Dynamic Neuroimaging Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 1-13, March.
    13. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    14. Michal Benko & Alois Kneip, 2005. "Common functional component modelling," SFB 649 Discussion Papers SFB649DP2005-016, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    15. Noh, Hohsuk & El Ghouch, Anouar & Van Keilegom, Ingrid, 2013. "Assessing model adequacy in possibly misspecified quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 558-569.
    16. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    17. Axel Munk & Tatyana Krivobokova, 2009. "Comments on: Goodness-of-fit tests in mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 256-259, August.
    18. Chung Chang & Yakuan Chen & R. Ogden, 2014. "Functional data classification: a wavelet approach," Computational Statistics, Springer, vol. 29(6), pages 1497-1513, December.
    19. Yuping Hu & Siyu Wu & Sanying Feng & Junliang Jin, 2020. "Estimation in Partial Functional Linear Spatial Autoregressive Model," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    20. Biau Gérard & Mas André, 2012. "PCA-kernel estimation," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 19-46, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:5:p:815-833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.