Advanced Search
MyIDEAS: Login

Estimation of intrinsic processes affected by additive fractal noise

Contents:

Author Info

  • Fernández-Pascual, Rosaura
  • Ruiz-Medina, María D.
  • Angulo, José M.
Registered author(s):

    Abstract

    Fractal Gaussian models have been widely used to represent the singular behavior of phenomena arising in different applied fields; for example, fractional Brownian motion and fractional Gaussian noise are considered as monofractal models in subsurface hydrology and geophysical studies Mandelbrot [The Fractal Geometry of Nature, Freeman Press, San Francisco, 1982 [13]]. In this paper, we address the problem of least-squares linear estimation of an intrinsic fractal input random field from the observation of an output random field affected by fractal noise (see Angulo et al. [Estimation and filtering of fractional generalised random fields, J. Austral. Math. Soc. A 69 (2000) 1-26 [2]], Ruiz-Medina et al. [Fractional generalized random fields on bounded domains, Stochastic Anal. Appl. 21 (2003a) 465-492], Ruiz-Medina et al. [Fractional-order regularization and wavelet approximation to the inverse estimation problem for random fields, J. Multivariate Anal. 85 (2003b) 192-216]. Conditions on the fractality order of the additive noise are studied to obtain a bounded inversion of the associated Wiener-Hopf equation. A stable solution is then obtained in terms of orthogonal bases of the reproducing kernel Hilbert spaces associated with the random fields involved. Such bases are constructed from orthonormal wavelet bases (see Angulo and Ruiz-Medina [Multiresolution approximation to the stochastic inverse problem, Adv. in Appl. Probab. 31 (1999) 1039-1057], Angulo et al. [Wavelet-based orthogonal expansions of fractional generalized random fields on bounded domains, Theoret. Probab. Math. Stat. (2004), in press]). A simulation study is carried out to illustrate the influence of the fractality orders of the output random field and the fractal additive noise on the stability of the solution derived.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-4HWXNXV-1/2/165d5dff9416f8ea433e8331f9c0790e
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 97 (2006)
    Issue (Month): 6 (July)
    Pages: 1361-1381

    as in new window
    Handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1361-1381

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Filtering Fractal processes Functional estimation Intrinsic random fields Wavelet analysis;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Beran, Jan & Ghosh, Sucharita & Schell, Dieter, 2009. "On least squares estimation for long-memory lattice processes," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2178-2194, November.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1361-1381. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.