Advanced Search
MyIDEAS: Login to save this article or follow this journal

Robust semiparametric M-estimation and the weighted bootstrap

Contents:

Author Info

  • Ma, Shuangge
  • Kosorok, Michael R.
Registered author(s):

    Abstract

    M-estimation is a widely used technique for statistical inference. In this paper, we study properties of ordinary and weighted M-estimators for semiparametric models, especially when there exist parameters that cannot be estimated at the convergence rate. Results on consistency, rates of convergence for all parameters, and consistency and asymptotic normality for the Euclidean parameters are provided. These results, together with a generic paradigm for studying semiparametric M-estimators, provide a valuable extension to previous related research on semiparametric maximum-likelihood estimators (MLEs). Although penalized M-estimation does not in general fit in the framework we discuss here, it is shown for a great variety of models that many of the forgoing results still hold, including the consistency and asymptotic normality of the Euclidean parameters. For semiparametric M-estimators that are not likelihood based, general inference procedures for the Euclidean parameters have not previously been developed. We demonstrate that our paradigm leads naturally to verification of the validity of the weighted bootstrap in this setting. For illustration, several examples are investigated in detail. The new M-estimation framework and accompanying weighted bootstrap technique shed light on a universal way of investigating semiparametric models.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-4DS7WVV-3/2/b0e47eb038d8a20fbd61be441497eddc
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 96 (2005)
    Issue (Month): 1 (September)
    Pages: 190-217

    as in new window
    Handle: RePEc:eee:jmvana:v:96:y:2005:i:1:p:190-217

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: M-estimation Semiparametric models Weighted bootstrap Empirical processes;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    2. Cheng, Guang & Kosorok, Michael R., 2009. "The penalized profile sampler," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 345-362, March.
    3. Xiaohong Chen & Demian Pouzo, 2008. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," CeMMAP working papers CWP09/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Xiaohong Chen & Demian Pouzo, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," CeMMAP working papers CWP20/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Xiaohong Chen & Demian Pouzo, 2008. "Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals," Cowles Foundation Discussion Papers 1640R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2009.
    6. Jiang, Rong & Zhou, Zhan-Gong & Qian, Wei-Min & Chen, Yong, 2013. "Two step composite quantile regression for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 180-191.
    7. Chen, Xiaohong & Pouzo, Demian, 2008. "Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals," Working Papers 38, Yale University, Department of Economics.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:96:y:2005:i:1:p:190-217. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.