Advanced Search
MyIDEAS: Login to save this article or follow this journal

Asymptotic expansions for distributions of latent roots in multivariate analysis

Contents:

Author Info

  • Constantine, A. G.
  • Muirhead, R. J.
Registered author(s):

    Abstract

    Asymptotic expansions are given for the distributions of latent roots of matrices in three multivariate situations. The distribution of the roots of the matrix S1(S1 + S2)-1, where S1 is Wm(n1, [Sigma], [Omega]) and S2 is Wm(n2, [Sigma]), is studied in detail and asymptotic series for the distribution are obtained which are valid for some or all of the roots of the noncentrality matrix [Omega] large. These expansions are obtained using partial-differential equations satisfied by the distribution. Asymptotic series are also obtained for the distributions of the roots of n-1S, where S in Wm(n, [Sigma]), for large n, and S1S2-1, where S1 is Wm(n1, [Sigma]) and S2 is Wm(n2, [Sigma]), for large n1 + n2.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-4CRMB6T-GR/2/d3cde44c009d76f598473e27e03d2336
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 6 (1976)
    Issue (Month): 3 (September)
    Pages: 369-391

    as in new window
    Handle: RePEc:eee:jmvana:v:6:y:1976:i:3:p:369-391

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Asymptotic distributions latent roots asymptotic expansions partial-differential equations;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Phillips, Peter C B, 1994. "Some Exact Distribution Theory for Maximum Likelihood Estimators of Cointegrating Coefficients in Error Correction Models," Econometrica, Econometric Society, vol. 62(1), pages 73-93, January.
    2. Chikuse, Yasuko, 1998. "Density Estimation on the Stiefel Manifold," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 188-206, August.
    3. Chikuse, Yasuko, 2003. "Concentrated matrix Langevin distributions," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 375-394, May.
    4. Chao, John C. & Phillips, Peter C. B., 2002. "Jeffreys prior analysis of the simultaneous equations model in the case with n+1 endogenous variables," Journal of Econometrics, Elsevier, vol. 111(2), pages 251-283, December.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:6:y:1976:i:3:p:369-391. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.