Advanced Search
MyIDEAS: Login to save this article or follow this journal

Kaplan-Meier Estimator under Association


Author Info

  • Cai, Zongwu
  • Roussas, George G.
Registered author(s):


    Consider a long term study, where a series of possibly censored failure times is observed. Suppose the failure times have a common marginal distribution functionF, but they exhibit a mode of dependence characterized by positive or negative association. Under suitable regularity conditions, it is shown that the Kaplan-Meier estimatorFnofFis uniformly strongly consistent; rates for the convergence are also provided. Similar results are established for the empirical cumulative hazard rate function involved. Furthermore, a stochastic process generated byFnis shown to be weakly convergent to an appropriate Gaussian process. Finally, an estimator of the limiting variance of the Kaplan-Meier estimator is proposed and it is shown to be weakly convergent.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 67 (1998)
    Issue (Month): 2 (November)
    Pages: 318-348

    as in new window
    Handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:318-348

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: censored data Kaplan-Meier estimator negative association positive association strong consistency variance estimator weak convergence;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Masry, Elias, 2003. "Local polynomial fitting under association," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 330-359, August.
    2. Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2006. "Density and Hazard Rate Estimation for Censored and ?-mixing Data Using Gamma Kernels," Cahiers de recherche 06-16, HEC Montréal, Institut d'économie appliquée.
    3. Masry, Elias, 2002. "Multivariate probability density estimation for associated processes: strong consistency and rates," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 205-219, June.
    4. Nikolai Leonenko & Ludmila Sakhno, 2001. "On the Kaplan–Meier Estimator of Long-Range Dependent Sequences," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 17-40, January.
    5. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    6. Cai, Zongwu, 2001. "Estimating a Distribution Function for Censored Time Series Data," Journal of Multivariate Analysis, Elsevier, vol. 78(2), pages 299-318, August.
    7. Ioannides, D. A. & Roussas, G. G., 1999. "Exponential inequality for associated random variables," Statistics & Probability Letters, Elsevier, vol. 42(4), pages 423-431, May.
    8. Roussas, George G., 2000. "Asymptotic normality of the kernel estimate of a probability density function under association," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 1-12, October.
    9. Liang, Han-Ying & Jing, Bing-Yi, 2005. "Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 227-245, August.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:318-348. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.