Advanced Search
MyIDEAS: Login

On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices


Author Info

  • Silverstein, J. W.
  • Bai, Z. D.
Registered author(s):


    A stronger result on the limiting distribution of the eigenvalues of random Hermitian matrices of the form A + XTX*, originally studied in Marcenko and Pastur, is presented. Here, X(N - n), T(n - n), and A(N - N) are independent, with X containing i.i.d. entries having finite second moments, T is diagonal with real (diagonal) entries, A is Hermitian, and n/N --> c > 0 as N --> [infinity]. Under additional assumptions on the eigenvalues of A and T, almost sure convergence of the empirical distribution function of the eigenvalues of A + XTX* is proven with the aid of Stieltjes transforms, taking a more direct approach than previous methods.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 54 (1995)
    Issue (Month): 2 (August)
    Pages: 175-192

    as in new window
    Handle: RePEc:eee:jmvana:v:54:y:1995:i:2:p:175-192

    Contact details of provider:
    Web page:

    Order Information:

    Related research



    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Guhlich, Matthias & Nagel, Jan & Dette, Holger, 2010. "Random block matrices generalizing the classical Jacobi and Laguerre ensembles," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1884-1897, September.
    2. Jean-Philippe Bouchaud & Laurent Laloux & M. Augusta Miceli & Marc Potters, 2005. "Large dimension forecasting models and random singular value spectra," Papers physics/0512090,
    3. Rubio, Francisco & Mestre, Xavier, 2011. "Spectral convergence for a general class of random matrices," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 592-602, May.
    4. Wang, Lili & Paul, Debashis, 2014. "Limiting spectral distribution of renormalized separable sample covariance matrices when p/n→0," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 25-52.
    5. Paul, Debashis & Silverstein, Jack W., 2009. "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 37-57, January.
    6. Olivier Ledoit & Sandrine Péché, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
    7. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2014. "Estimation of the Global Minimum Variance Portfolio in High Dimensions," Papers 1406.0437,
    8. Bai, Z.D. & Zhang, L.X., 2010. "The limiting spectral distribution of the product of the Wigner matrix and a nonnegative definite matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1927-1949, October.
    9. Wang, Cheng & Yang, Jing & Miao, Baiqi & Cao, Longbing, 2013. "Identity tests for high dimensional data using RMT," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 128-137.
    10. Olivier Ledoit & Michael Wolf, 2013. "Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions," ECON - Working Papers 105, Department of Economics - University of Zurich, revised Jul 2013.
    11. Li, Weiming & Qin, Yingli, 2014. "Hypothesis testing for high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 108-119.
    12. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    13. Bai, Z.D. & Miao, Baiqi & Jin, Baisuo, 2007. "On limit theorem for the eigenvalues of product of two random matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 76-101, January.
    14. Pan, Guangming & Miao, Boqi & Jin, Baisuo, 2005. "Some limiting theorems of some random quadratic forms," Statistics & Probability Letters, Elsevier, vol. 75(3), pages 151-157, December.
    15. Dozier, R. Brent & Silverstein, Jack W., 2007. "On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 678-694, April.
    16. Olivier Ledoit & Michael Wolf, 2013. "Optimal estimation of a large-dimensional covariance matrix under Stein’s loss," ECON - Working Papers 122, Department of Economics - University of Zurich, revised Dec 2013.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:54:y:1995:i:2:p:175-192. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.