Advanced Search
MyIDEAS: Login to save this article or follow this journal

Optimal Choice of Sample Fraction in Extreme-Value Estimation

Contents:

Author Info

  • Dekkers, A. L. M.
  • Dehaan, L.
Registered author(s):

    Abstract

    We study the asymptotic bias of the moment estimator [gamma]n for the extreme-value index [gamma] [set membership, variant] 5 under quite natural and general conditions on the underlying distribution function. Furthermore the optimal choice for the sample franction in estimating [gamma] is considered by minimizing the mean squared error of [gamma]n - [gamma]. The results cover all three limiting types of extreme-value theory. The connection between statistics and regular variation and [Pi]-variation is handled in a systematic way.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-45P650R-1/2/139aa3edfdf400adf5b2d96ce019bc84
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 47 (1993)
    Issue (Month): 2 (November)
    Pages: 173-195

    as in new window
    Handle: RePEc:eee:jmvana:v:47:y:1993:i:2:p:173-195

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. El-Aroui, Mhamed-Ali & Diebolt, Jean, 2002. "On the use of the peaks over thresholds method for estimating out-of-sample quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 453-475, June.
    2. Laurens F.M. de Haan & Liang Peng & T.T. Pereira, 1997. "A Bootstrap-based Method to Achieve Optimality in Estimating the Extreme-value Index," Tinbergen Institute Discussion Papers 97-099/4, Tinbergen Institute.
    3. J. Danielsson & L. de Haan & L. Peng & C.G. de Vries, 1997. "Using a Bootstrap Method to choose the Sample Fraction in Tail Index Estimation," Tinbergen Institute Discussion Papers 97-016/4, Tinbergen Institute.
    4. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    5. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    6. Ana Ferreira & Casper G. de Vries, 2004. "Optimal Confidence Intervals for the Tail Index and High Quantiles," Tinbergen Institute Discussion Papers 04-090/2, Tinbergen Institute.
    7. Necir, Abdelhakim & Meraghni, Djamel, 2009. "Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 49-58, August.
    8. Rassoul, Abdelaziz, 2013. "Kernel-type estimator of the conditional tail expectation for a heavy-tailed distribution," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 698-703.
    9. Holger Drees & Laurens F.M. de Haan & Sidney Resnick, 1998. "How to make a Hill Plot," Tinbergen Institute Discussion Papers 98-090/4, Tinbergen Institute.
    10. Geluk, J. L. & Peng, Liang, 2000. "An adaptive optimal estimate of the tail index for MA(l) time series," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 217-227, February.
    11. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
    12. Laurens F.M. de Haan & Liang Peng & T.T. Pereira, 1997. "A Bootstrap-based Method to Achieve Optimality in Estimating the Extreme-value Index," Tinbergen Institute Discussion Papers 97-099/4, Tinbergen Institute.
    13. Tsourti, Zoi & Panaretos, John, 2003. "Extreme Value Index Estimators and Smoothing Alternatives: A Critical Review," MPRA Paper 6390, University Library of Munich, Germany.
    14. Peng, L., 1998. "Asymptotically unbiased estimators for the extreme-value index," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 107-115, June.
    15. repec:dgr:uvatin:2098090 is not listed on IDEAS
    16. repec:dgr:uvatin:2097099 is not listed on IDEAS
    17. M. João Martins & M. Ivette Gopmes & M. Manuela Neves, 2004. "Averages of Hill estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 13(1), pages 113-128, June.
    18. Holger Drees & Laurens F.M. de Haan & Sidney Resnick, 1998. "How to make a Hill Plot," Tinbergen Institute Discussion Papers 98-090/4, Tinbergen Institute.
    19. Neves, Claudia & Fraga Alves, M. I., 2004. "Reiss and Thomas' automatic selection of the number of extremes," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 689-704, November.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:47:y:1993:i:2:p:173-195. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.