IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v189y2022ics0047259x21001421.html
   My bibliography  Save this article

Robust functional principal component analysis for non-Gaussian longitudinal data

Author

Listed:
  • Zhong, Rou
  • Liu, Shishi
  • Li, Haocheng
  • Zhang, Jingxiao

Abstract

Functional principal component analysis is essential in functional data analysis, but the inference will become unconvincing when non-Gaussian characteristics occur (e.g., heavy tail and skewness). The focus of this manuscript is to develop a robust functional principal component analysis methodology to deal with non-Gaussian longitudinal data, where sparsity and irregularity along with non-negligible measurement errors must be considered. We introduce a Kendall’s τ function to handle the non-Gaussian issues. Moreover, the estimation algorithm is studied and the asymptotic theory is discussed. Our method is validated by a simulation study and it is applied to analyze a real world dataset.

Suggested Citation

  • Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001421
    DOI: 10.1016/j.jmva.2021.104864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21001421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    2. Daniel Gervini, 2008. "Robust functional estimation using the median and spherical principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 587-600.
    3. Jeng-Min Chiou & Hans-Georg Müller, 2016. "A pairwise interaction model for multivariate functional and longitudinal data," Biometrika, Biometrika Trust, vol. 103(2), pages 377-396.
    4. Gertheiss, Jan & Goldsmith, Jeff & Staicu, Ana-Maria, 2017. "A note on modeling sparse exponential-family functional response curves," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 46-52.
    5. David Kraus & Victor M. Panaretos, 2012. "Dispersion operators and resistant second-order functional data analysis," Biometrika, Biometrika Trust, vol. 99(4), pages 813-832.
    6. Ling Zhou & Huazhen Lin & Hua Liang, 2018. "Efficient Estimation of the Nonparametric Mean and Covariance Functions for Longitudinal and Sparse Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1550-1564, October.
    7. Virta, Joni & Li, Bing & Nordhausen, Klaus & Oja, Hannu, 2020. "Independent component analysis for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    8. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    9. Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
    10. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    11. Hao Ji & Hans-Georg Müller, 2017. "Optimal designs for longitudinal and functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 859-876, June.
    12. Hongyuan Cao & Donglin Zeng & Jason P. Fine, 2015. "Regression analysis of sparse asynchronous longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 755-776, September.
    13. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    14. Fang Han & Han Liu, 2018. "ECA: High-Dimensional Elliptical Component Analysis in Non-Gaussian Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 252-268, January.
    15. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
    16. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    17. Yehua Li, 2011. "Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 355-370.
    18. Elias Masry, 1996. "Multivariate Local Polynomial Regression For Time Series:Uniform Strong Consistency And Rates," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(6), pages 571-599, November.
    19. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    20. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.
    3. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "Robust simultaneous inference for the mean function of functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 785-803, September.
    4. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    5. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
    6. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
    7. Park, Yeonjoo & Kim, Hyunsung & Lim, Yaeji, 2023. "Functional principal component analysis for partially observed elliptical process," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    8. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    9. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    10. Martínez-Hernández, Israel & Genton, Marc G. & González-Farías, Graciela, 2019. "Robust depth-based estimation of the functional autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 66-79.
    11. Xinyue Chang & Yehua Li & Yi Li, 2023. "Asynchronous and error‐prone longitudinal data analysis via functional calibration," Biometrics, The International Biometric Society, vol. 79(4), pages 3374-3387, December.
    12. Daniel Backenroth & Russell T. Shinohara & Jennifer A. Schrack & Jeff Goldsmith, 2020. "Nonnegative decomposition of functional count data," Biometrics, The International Biometric Society, vol. 76(4), pages 1273-1284, December.
    13. Jia Chen & Degui Li & Yingcun Xia, 2015. "New Semiparametric Estimation Procedure for Functional Coefficient Longitudinal Data Models," Discussion Papers 15/17, Department of Economics, University of York.
    14. Ricardo A. Maronna, 2021. "Robust functional principal components for irregularly spaced longitudinal data," Statistical Papers, Springer, vol. 62(4), pages 1563-1582, August.
    15. Julia Wrobel & Vadim Zipunnikov & Jennifer Schrack & Jeff Goldsmith, 2019. "Registration for exponential family functional data," Biometrics, The International Biometric Society, vol. 75(1), pages 48-57, March.
    16. Jia, Shengji & Zhang, Chunming & Lu, Haoran, 2022. "Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    17. Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2022. "Universal Local Linear Kernel Estimators in Nonparametric Regression," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    18. Majumdar, Subhabrata & Chatterjee, Snigdhansu, 2022. "On weighted multivariate sign functions," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    19. Hervé Cardot & Antoine Godichon-Baggioni, 2017. "Fast estimation of the median covariation matrix with application to online robust principal components analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 461-480, September.
    20. Chen, Jia & Li, Degui & Xia, Yingcun, 2019. "Estimation of a rank-reduced functional-coefficient panel data model with serial correlation," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 456-479.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.