IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v173y2019icp268-290.html
   My bibliography  Save this article

Forward regression for Cox models with high-dimensional covariates

Author

Listed:
  • Hong, Hyokyoung G.
  • Zheng, Qi
  • Li, Yi

Abstract

Forward regression, a classical variable screening method, has been widely used for model building when the number of covariates is relatively low. However, forward regression is seldom used in high-dimensional settings because of the cumbersome computation and unknown theoretical properties. Some recent works have shown that forward regression, coupled with an extended Bayesian information criterion (EBIC)-based stopping rule, can consistently identify all relevant predictors in high-dimensional linear regression settings. However, the results are based on the sum of residual squares from linear models and it is unclear whether forward regression can be applied to more general regression settings, such as Cox proportional hazards models. We introduce a forward variable selection procedure for Cox models. It selects important variables sequentially according to the increment of partial likelihood, with an EBIC stopping rule. To our knowledge, this is the first study that investigates the partial likelihood-based forward regression in high-dimensional survival settings and establishes selection consistency results. We show that, if the dimension of the true model is finite, forward regression can discover all relevant predictors within a finite number of steps and their order of entry is determined by the size of the increment in partial likelihood. As partial likelihood is not a regular density-based likelihood, we develop some new theoretical results on partial likelihood and use these results to establish the desired sure screening properties. The practical utility of the proposed method is examined via extensive simulations and analysis of a subset of the Boston Lung Cancer Survival Cohort study, a hospital-based study for identifying biomarkers related to lung cancer patients’ survival.

Suggested Citation

  • Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
  • Handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:268-290
    DOI: 10.1016/j.jmva.2019.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18304615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hui Zou, 2008. "A note on path-based variable selection in the penalized proportional hazards model," Biometrika, Biometrika Trust, vol. 95(1), pages 241-247.
    2. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    3. Jialiang Li & Qi Zheng & Limin Peng & Zhipeng Huang, 2016. "Survival impact index and ultrahigh‐dimensional model‐free screening with survival outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1145-1154, December.
    4. Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.
    5. Rui Song & Wenbin Lu & Shuangge Ma & X. Jessie Jeng, 2014. "Censored rank independence screening for high-dimensional survival data," Biometrika, Biometrika Trust, vol. 101(4), pages 799-814.
    6. Wenxuan Zhong & Tingting Zhang & Yu Zhu & Jun S. Liu, 2012. "Correlation pursuit: forward stepwise variable selection for index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(5), pages 849-870, November.
    7. Shan Luo & Jinfeng Xu & Zehua Chen, 2015. "Extended Bayesian information criterion in the Cox model with a high-dimensional feature space," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 287-311, April.
    8. Anders Gorst-Rasmussen & Thomas Scheike, 2013. "Independent screening for single-index hazard rate models with ultrahigh dimensional features," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 217-246, March.
    9. Ning Hao & Hao Helen Zhang, 2014. "Interaction Screening for Ultrahigh-Dimensional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1285-1301, September.
    10. Ming-Yen Cheng & Toshio Honda & Jin-Ting Zhang, 2016. "Forward Variable Selection for Sparse Ultra-High Dimensional Varying Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1209-1221, July.
    11. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    12. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    13. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    14. Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
    15. Hyokyoung G. Hong & Jian Kang & Yi Li, 2018. "Conditional screening for ultra-high dimensional covariates with survival outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 45-71, January.
    16. J. P. Fine, 2002. "Comparing nonnested Cox models," Biometrika, Biometrika Trust, vol. 89(3), pages 635-648, August.
    17. Chris T. Volinsky & Adrian E. Raftery, 2000. "Bayesian Information Criterion for Censored Survival Models," Biometrics, The International Biometric Society, vol. 56(1), pages 256-262, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Yu & Shan Luo, 2022. "A sequential feature selection procedure for high-dimensional Cox proportional hazards model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1109-1142, December.
    2. Qu, Lianqiang & Wang, Xiaoyu & Sun, Liuquan, 2022. "Variable screening for varying coefficient models with ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    3. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Yu & Shan Luo, 2022. "A sequential feature selection procedure for high-dimensional Cox proportional hazards model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1109-1142, December.
    2. Zhang, Shen & Zhao, Peixin & Li, Gaorong & Xu, Wangli, 2019. "Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 37-52.
    3. Honda, Toshio & 本田, 敏雄 & Lin, Chien-Tong, 2022. "Forward variable selection for ultra-high dimensional quantile regression models," Discussion Papers 2021-02, Graduate School of Economics, Hitotsubashi University.
    4. Eun Ryung Lee & Seyoung Park & Sang Kyu Lee & Hyokyoung G. Hong, 2023. "Quantile forward regression for high-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 769-806, October.
    5. Jing Zhang & Yanyan Liu & Hengjian Cui, 2021. "Model-free feature screening via distance correlation for ultrahigh dimensional survival data," Statistical Papers, Springer, vol. 62(6), pages 2711-2738, December.
    6. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    7. Akira Shinkyu, 2023. "Forward Selection for Feature Screening and Structure Identification in Varying Coefficient Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 485-511, February.
    8. Toshio Honda & Chien-Tong Lin, 2023. "Forward variable selection for ultra-high dimensional quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 393-424, June.
    9. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
    10. Qu, Lianqiang & Wang, Xiaoyu & Sun, Liuquan, 2022. "Variable screening for varying coefficient models with ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    11. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
    12. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    13. Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
    14. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    15. Haofeng Wang & Hongxia Jin & Xuejun Jiang & Jingzhi Li, 2022. "Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
    16. Chen, Xiaolin & Chen, Xiaojing & Wang, Hong, 2018. "Robust feature screening for ultra-high dimensional right censored data via distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 118-138.
    17. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    18. Jing Zhang & Guosheng Yin & Yanyan Liu & Yuanshan Wu, 2018. "Censored cumulative residual independent screening for ultrahigh-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 273-292, April.
    19. Yang Qu & Yu Cheng, 2023. "Volume under the ROC surface for high-dimensional independent screening with ordinal competing risk outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 735-751, October.
    20. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:268-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.