Advanced Search
MyIDEAS: Login to save this article or follow this journal

Probabilities of maximal deviations for nonparametric regression function estimates


Author Info

  • Johnston, Gordon J.
Registered author(s):


    Let (X, Y) have regression function m(x) = E(Y X = x), and let X have a marginal density f1(x). We consider two nonparameteric estimates of m(x): the Watson estimate when f1 is known and the Yang estimate when f1 is known or unknown. For both estimates the asymptotic distribution of the maximal deviation from m(x) is proved, thus extending results of Bickel and Rosenblatt for the estimation of density functions.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 12 (1982)
    Issue (Month): 3 (September)
    Pages: 402-414

    as in new window
    Handle: RePEc:eee:jmvana:v:12:y:1982:i:3:p:402-414

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Density estimates nonparemetric regression estimates maximal deviations Gaussian processes;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. J. Cristóbal & J. Ojeda & J. Alcalá, 2004. "Confidence bands in nonparametric regression with length biased data," Annals of the Institute of Statistical Mathematics, Springer, vol. 56(3), pages 475-496, September.
    2. Hidalgo, J., 2008. "Specification testing for regression models with dependent data," Journal of Econometrics, Elsevier, vol. 143(1), pages 143-165, March.
    3. Efang Kong & Oliver Linton & Yingcun Xia, 2011. "Global Bahadur representation for nonparametric censored regression quantiles and its applications," CeMMAP working papers CWP33/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Wolfgang Karl Härdle & Ya'acov Ritov & Weining Wang, 2013. "Tie the straps: uniform bootstrap confidence bands for bounded influence curve estimators," SFB 649 Discussion Papers SFB649DP2013-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Norberto Rodríguez & Patricia Siado, 2003. "Un Pronóstico No Paramétrico De La Inflación Colombiana," BORRADORES DE ECONOMIA 003691, BANCO DE LA REPÚBLICA.
    6. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Härdle, 2014. "Confidence Corridors for Multivariate Generalized Quantile Regression," SFB 649 Discussion Papers SFB649DP2014-028, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Javier Hidalgo, 2007. "Specification testing for regression models with dependent data," LSE Research Online Documents on Economics 6799, London School of Economics and Political Science, LSE Library.
    8. Zhao, Zhibiao, 2011. "Nonparametric model validations for hidden Markov models with applications in financial econometrics," Journal of Econometrics, Elsevier, vol. 162(2), pages 225-239, June.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:12:y:1982:i:3:p:402-414. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.